ВВЕДЕНИЕВ СТАНКОВЕДЕНИЕ

КОНСНЕКТ ЛЕКЦИЙ

Первые сведения о металлорежущем станке относятся к 3–му веку до нашей эры. Так Архимед, знаменитый ученый древнего мира, в описании прибора для астрономических измерений упоминает “…небольшой цилиндр, обточенный на токарном станке”. С тех пор техника обработки резанием прошла длинный и сложный путь развития - от примитивной ручной до сложнейшей автоматизированной механической обработки, уровень которой определяется общим уровнем техники и характеризуется точностью получаемых изделий и производительностью.

Станкостроение, как отрасль промышленности, является основой машиностроения, так как металлорежущие станки – это орудия производства, посредством которых изготавливается абсолютное большинство деталей различных машин и приборов. Станкостроение вероятно и самая многообразная отрасль техники. Здесь можно встретить станки – гиганты, рабочие столы которых сравнимы с театральной сценой, и станки – малютки, всю сменную выработку которых можно разместить на ладони. Например, на Краматорском машиностроительном заводе (Украина) был создан токарный станок для обработки деталей длиной более 30 метров, а на Коломенском заводе тяжелого станкостроения (Российская Федерация) – карусельный станок для обработки деталей диаметром до 16 метров и зубообрабатывающий станок для нарезания зубчатых колес диаметром до 8 метров и модулем до 50 миллиметров. Известны продольно-фрезерные станки для обработки базовых корпусных деталей различных машин, длиной 12 метров и шириной 4 метра. Практически в каждой часовой мастерской можно встретить переносной токарный станок, помещающийся в небольшом чемодане.

В архиве Тульского оружейного завода сохранились старинные, относящиеся к 1677 г. чертежи и описание “анбара сверлишного” с конным приводом - установки для рассверливания стволов пушек. Вероятно это наиболее старый рабочий проект металлорежущего станка. До сих пор сохраняются два токарных станка, созданные около 1700 г. русским токарем А. Нартовым. Один из них является экспонатом Эрмитажа в Санкт-Петербурге (Россия), а другой – экспонатом Парижского музея (Франция). Построенный А. Нартовым в 1712 г. токарный станок с суппортом – держателем инструмента, по существу, был первым станком, который можно было выпускать серийно. Однако в тот период Российская империя, как и другие развитые страны, не была готова к созданию станкостроительной отрасли машиностроения.

М. Сидоров, современник А. Нартова, в 1714 г. изготовил многопозиционный станок для одновременного сверления 24 ружейных стволов. А через год Я. Батищев создал первую хонинговальную, как тогда говорили машину, для одновременной чистовой обработки 12 стволов. Эта машина осуществляла возвратно-поступательное и вращательное движение инструмента с помощью храпового механизма. Оба станка оказались весьма удачными и проработали более 100 лет.



Русский механик И. Ползунов на 20 лет опередил англичанина Д. Уайта, построив еще в 1765 г. в Барнауле первую паровую машину. Вместе со своими учениками он изготовил инструмент и создал станки для токарной обработки паровых цилиндров длиной 3 метра.

Станкостроение как отрасль промышленного производства появилось в конце 18-го века в Англии в результате промышленной революции. Родоначальником отрасли считается английский кузнец Г. Модсли, изготовивший в 1794 г. свой первый токарный станок с крестовым суппортом, повторив, как это часто бывает, изобретенный в начале века суппорт. Организовав свое дело и получив патенты на токарно-винторезный станок со сменными ходовыми винтами (1798 г.) и гитару сменных зубчатых колес (1800 г.), он приступил к производству на промышленной основе металлорежущих станков (МРС), называвшихся тогда обрабатывающими махинами. Он выпускал токарно-винторезные, отрезные с маятниковой пилой, сверлильные, долбежные, поперечно-строгальные, расточные, зубострогальные и ряд модификаций фрезерных станков. Выпущенные Г. Мондсли станки использовались в производстве до конца 19-го века.

В Российской империи вся незначительная потребность в МРС удовлетворялась главным образом за счет импорта. Первым заводом, начавшим производство станков, был завод Берда в Санкт-Петербурге, построенный еще в 1790 г. К 1913 г. (год промышленного подъема) вся машиностроительная промышленность империи располагала парком в 75 тысяч МРС, преимущественно простейших. К этому времени было всего 3 станкостроительных завода, выпустивших за весь 1913 г. всего 1,5 тысячи МРС 3-х моделей.

До конца 19-го века в механических цехах приводы станков осуществлялись от групповых трансмиссий, получавших энергию вращательного движения от паровой машины. Развитие электромашиностроения вытеснило паровую машину из механических цехов. А в начале 20-го века станки стали оснащать индивидуальными электродвигателями.

В Советском Союзе решение об организации станкостроения как специализированной отрасли было принято в 1934 г. Это решение положило начало станкостроению и в Беларуси. И уже в 1937 г. на одном из перепрофилированных машиностроительных заводов был выпущен первый белорусский станок - токарно-револьверный для прутковых работ. Первенец станкостроения Беларуси стал называться Минским станкостроительным заводом имени Октябрьской Революции. Его современные продольно-фрезерные станки пользуются стабильным спросом в странах с развитым машиностроением.

Интенсивный рост серийности и разнообразия выпускаемых машин и агрегатов в ряде отраслей машиностроения создал объективные предпосылки для создания станков с автоматическим циклом обработки. В итоге в конце первой половины 20-го века был начат выпуск станков – автоматов токарной группы для обработки деталей типа тел вращения из прутковых заготовок, а затем и полуавтоматов для обработки деталей из отдельных заготовок. Этот тип станков оснащен автоматической системой управления, выполненной в виде распределительного вала, несущего кулачки, управляющие исполнительными органами станков.

В этот же период для автотракторной промышленности, характеризующейся крупносерийным и массовым производством, начинается разработка и производство специализированных агрегатных станков для обработки корпусных деталей. Создание таких станков стало возможным благодаря развитию принципа модульного проектирования и на этой основе производство станков из унифицированных узлов и деталей. Автоматический цикл обработки на агрегатных станках обеспечивается разработанной для них цикловой системой управления. Эти станки благодаря концентрации операций и совмещению переходов обеспечивают в массовом производстве существенный рост производительности по сравнению с универсальными станками.

В 1947 г. профессор Б. Балакшин (Московский станкоинструментальный институт) первым в мировой практике сформулировал общие принципы адаптивного управления станками на примере токарной обработки, минимизирующие влияние случайных внешних факторов – неодинаковости припуска заготовки и микротвердости ее поверхности при точении на точность обработки. Проведенные им и его учениками исследования в этом направлении стали фундаментом для создания саморегулирующихся станочных систем.

Развитие кибернетики и создание вычислительных машин на базе больших интегральных схем привело к созданию систем числового программного управления (ЧПУ) и на этой основе нового класса станков - многооперационных станков, или обрабатывающих центров. Первые поиски в этом направлении были начаты в 1943 г. в США, когда по заданию авиационной промышленности ряд фирм приступил к проектированию многооперационного станка с ЧПУ и инструментальным магазином для обработки корпусных деталей. Первый станок был изготовлен в 1947 г. Одновременно была разработана система подготовки управляющих программ. Позже к работам в этой области станкостроения приступили и другие страны, имеющие развитую станкостроительную промышленность.

На основе начального опыта производства станков с ЧПУ утверждалось, что их выпуск из-за высокой стоимости экономически нецелесообразен. Однако впоследствии опыт использования станков этого класса показал ошибочность этого утверждения. Многооперационные станки с ЧПУ позволяют за одну установку производить столько операций и переходов, сколько ранее их выполнялось на всех позициях автоматических линий из универсальных станков. Современное многономенклатурное производство характеризуется быстрой сменой продукции машиностроения. Поэтому для ее изготовления необходим новый тип автоматических линий – гибкие быстропереналаживаемые производственные системы (ГПС), управляемые от ЭВМ. Основой таких систем являются гибкие производственные модули (ГПМ) на базе многооперационных станков с ЧПУ.

Обработка резанием, несмотря на наличие существенных отходов металла в виде стружки, сохраняет доминирующее положение среди всех известных методов обработки. При некотором уменьшении ее удельного веса за счет замены режущего инструмента физическими явлениями, абсолютный объем формообразующей обработки резанием со снятием стружки будет увеличиваться. Объясняется это тем, что обработка резанием является наименее энергоемким и наиболее экономичным процессом получения изделий требуемого качества. Данное положение в еще большей степени относится к станкам. Так открытие электроэрозионного явления, защищенного в СССР в 1947 г. соответствующим дипломом под № 1, привело к созданию очередного нового направления в станкостроении – производству электроэрозионных станков, используемых для обработки труднообрабатываемых материалов, в том числе неметаллических.

В странах с развитым машиностроением в технологическом парке обрабатывающих машин в 5,5 – 7 раз больше металлорежущих станков, чем кузнечнопрессовых машин, занимающих второе место по общему количеству. Прогнозируется, что в обозримом будущем это соотношение не будет менее 5-ти.

Беларусь относится к странам с развитой станкостроительной отраслью промышленности. Заводы этой отрасли расположены во всех регионах республики. Здесь выпускаются зубообрабатывающие, фрезерные, шлифовальные, сверлильные и агрегатные станки, многооперационные станки с ЧПУ станки инструментального производства, специализированные станки для подшипниковой промышленности, станки для обработки оптических материалов, деревообрабатывающие станки. Ряд заводов выпускает режущие и мерительные инструменты, технологическую оснастку для отрасли.

Заметный вклад в науку о металлорежущих станках и развитие отечественного станкостроения вносят соответствующие кафедры университетов Беларуси, в том числе кафедра металлорежущих станков и инструментов Полоцкого государственного университета.

Различные вопросы проектирования и исследования станков, обзоры достижений в мировом станкостроении освещаются в монографиях и периодических журналах “Станки и инструмент” (Россия), “Известия вузов, серия Машиностроение” (Россия), “Машиностроитель” (Россия), “Техника машиностроения” (Россия), “Теория и практика машиностроения” (Беларусь), в научных трудах университетов, в том числе в журнале “Вестник Полоцкого государственного университета, серия В, Прикладные науки”, в журналах, издаваемых в дальнем зарубежье.

Непрерывно возраставшее значение машин во всех отраслях производства вызвало бурное развитие станкостроения - технической базы всей машиностроительной промышленности. Металлообрабатывающие станки явились основой производства машин машинами. Их назначение - обработка всевозможных металлических заготовок с целью получения деталей определенной конфигурации, с заданными размерами, формой и качеством. Чем больше масштабы производства машин, тем более массовым должен быть выпуск деталей, тем более совершенными и производительными должны быть станки, обеспечивающие обработку необходимых деталей. Механический суппорт, примененный вначале для токарных и токарно-винторезных станков, был впоследствии превращен в весьма совершенный механизм и в модернизированной форме перенесен на многие станки, предназначенные для изготовления машин.

По мере совершенствования механического суппорта, системы зубчатых передач, механизма подачи, зажимных устройств и некоторых других конструктивных элементов кинематической схемы металлорежущие станки превращаются во все более развитые машины. В 70-х годах XIX в. машиностроение уже располагало основными рабочими машинами, позволявшими производить механическим способом важнейшие металлообрабатывающие операции.

Выдающуюся роль в развитии станкостроения сыграл машиностроительный завод, созданный Генри Модели. По существу это была настоящая школа механиков-машиностроителей, развивавших прогрессивные технические традиции основателя английского станкостроения. Здесь начинали работу и творческую деятельность такие видные конструкторы, исследователи и изобретатели в области машиностроения, как Д. Вит- ворт, Р. Роберте, Д. Несмит, Д. Клемент, Э. Уитни и др. Существенно то, что на заводе Модели была применена уже машинная система производства: трансмиссиями соединялось большое число рабочих машин, приводимых в движение универсальным тепловым двигателем. Этот завод изготовлял вначале детали для паровых машин, а в дальнейшем выпускал токарные, строгальные и другие механические станки. По образцу завода Г. Модели (впоследствии завод фирмы «Maudslay and Field») начали создаваться многие машиностроительные предприятия .

Ведущее положение в мировом станкостроении заняли заводы фирм «Nasmyth», «Whitworth», «Sharp and Robert» в Англии, «S. Sellers», «Pratt and Whitney», «Brawn and Sharp» в США. В 70-90-х годах американские предприятия, освоив выпуск новых типов станков (токарно-револьверных, универсально-фрезерных, карусельных, расточных, шлифовальных), начали опережать в техническом отношении английское станкостроение. В Германии производство станков начало развиваться в основном с 60 - 70-х годов XIX в. Здесь возникли фирмы «Reinecker», «Schiss», «Heimer und Pielz», «Waldrich», «Weisser» и др.

В России станки для оружейного производства (токарные, сверлильные, фрезерные, резьбонарезные, протяжные, шлифовальные, полировочные) изготовляли на Тульском оружейном заводе. В дальнейшем такие станки начали строить Ижевский, Сестрорецкий, Луганский заводы. Основанный в Москве завод бр. Бромлей (ныне «Красный пролетарий») стал первым русским специализированным станкостроительным заводом; на Всероссийской выставке в Петербурге в 1870 г. он выставил несколько оригинальных станков: радиально-сверлильный, продольно-строгальный, поперечно-строгальный. На политехнической выставке в Москве в 1872 г. завод получил золотую медаль за экспонированные продольно-строгальные и колесо-токарные станки. В 1900 г. завод бр. Бромлей успешно демонстрировал свою продукцию на Всемирной промышленной выставке в Париже. Появились в России и другие станкостроительные предприятия: «Фельзер» в Риге, «Феникс» в Петербурге, «Штолле» и «Вейхельт» в Москве, завод бр. Маминых в Балакове, «Столь» в Воронеже, заводы Грачева и Доброва в Москве. Однако в целом выпуск станков в России был незначительным даже в 900-х годах; он не удовлетворял потребности развивавшейся промышленности ни по количеству, ни по техническому уровню. Это и служило причиной значительного импорта зарубежных станков для российских заводов и фабрик.

Мировое станкостроение в последней трети XIX в. располагало пятью основными типами металлорежущих станков. Преобладающую часть станочного парка составляли токарные станки, которые применяли для обработки наружных и внутренних поверхностей тел вращения. На токарных станках обтачивали гладкие и ступенчатые валы, конусы, шары, различные фасонные поверхности, растачивали цилиндры, отверстия, нарезали резьбу. Вторую многочисленную группу составляли сверлильные станки, предназначавшиеся для сверления и обработки отверстий, а также для расточки и нарезки резьбы. Строгальные станки, подразделявшиеся на горизонтальные и вертикальные (долбежные), служили для обработки плоских поверхностей изделий. Расширялось использование фрезерных станков для обработки наружных и внутренних поверхностей особенно точных деталей, а также для получения изделий фасонной конфигурации. Наконец, пятую группу металлообрабатывающего оборудования составляли шлифовальные станки, на которых проводили чистовую обработку деталей различной формы с помощью абразивных материалов и инструментов.

В свою очередь, специализированные типы станков дифференцировались по характеру выполняемых в производственном процессе технологических операций. Появляются станки, предназначенные для выполнения одной определенной или нескольких аналогичных операций. Так, в группе универсальных токарных станков появился специализированный станок для растачивания длинных цилиндрических и полых изделий (типа орудийных стволов и гребных валов). Был создан горизонтально-расточный станок, предназначенный для точной расточки внутренних поверхностей. Специфика обработки крупных деталей малой длины и большого диаметра вызвала появление токарно-лобовых станков. Для тяжелых, крупногабаритных изделий, которые трудно установить на обычных токарных станках, создаются токарно-карусельные станки. Видную роль в металлообработке начинают играть токарно-револьверные станки, снабженные специальной револьверной головкой, в которой закрепляют разнообразные режущие инструменты. Некоторые станки револьверного типа позволяли устанавливать в одной головке до 12-16 инструментов.

Дифференцируются и другие типы станков. Из сверлильных выделяются радиально-сверлильные станки, предназначенные для сверления и последующей обработки отверстий в деталях больших габаритов, которые не могут устанавливаться на обычных сверлильных станках. Для строгания плоскостей крупных корпусных деталей (типа рам, станин, корпусов машин) создаются мощные продольно-строгальные станки с движущимся столом длиной 3-4 м и более. Появляются продольно- и кару- сельно-фрезерные станки, позволяющие обрабатывать одновременно по нескольку массивных деталей. Наряду с обычными шлифовальными станками конструируются круглошлифовальные станки для наружного шлифования, для внутреннего шлифования и т. д. Создается оборудование, специально предназначенное для нарезания зубьев в зубчатых колесах: зубофрезерные, зубодолбежные, зубострогальные станки. Усложнение деталей машин и специализация металлообработки приводят к появлению шлицефрезерных, шпоночно-фрезерных, протяжных, хонинговальных и других специальных станков .

Параллельно с развитием металлорежущего оборудования шел процесс технического совершенствования других видов машин-орудий, предназначенных для обработки металлов. Так, потребности получения крупных металлических заготовок вызвали проектирование и строительство гигантских машин для ковки и прессования металлоизделий. В 70-80-х годах на заводах Круппа в Германии работали паровые молоты с массой падающих частей 50-75 т. В 1891 г. в США был построен огромный молот с массой рабочей части 125 т. Высота этого гиганта составляла 27,5 м, а наковальня весила 475 т; от ударов машины при ее работе содрогались близлежащие заводские здания и постройки . Сложности эксплуатации молотов-гигантов привели к распространению на машиностроительных заводах для производства крупных поковок мощных гидравлических прессов. При рабочем усилии гидравлического пресса 10 тыс. т он заменяет молот с массой падающих частей до 500 т (постройка и использование такого молота были бы чрезвычайно трудным делом). Без мощных гидравлических прессов была бы невозможна постройка многих машин-гигантов, у которых отдельные части весили десятки и более тонн.

Повышение производительности металлообрабатывающего оборудования требовало возможно большей механизации основных и вспомогательных операций, сокращения непроизводительных затрат времени. В то же время сужение функций станков прямо вело к упрощению выполняемых ими операций и тем самым создавало благоприятные условия для внедрения автоматических процессов. Были созданы полуавтоматические и автоматические станки, у которых подвод режущего инструмента в рабочее положение, подача инструмента и отвод его после работы в исходное положение совершались автоматически, без участия человека.

Первыми автоматизированными станками были деревообрабатывающие автоматы , сконструированные в США К. Випплем и Т. Слоаном. Один из первых металлорежущих автоматов создал американец X. Спенсер в 1873 г. на базе револьверного станка. В качестве управляющего устройства в этом автомате использованы кулачки и распределительный вал. Появившиеся в 70-80-х годах автоматы системы «Кливленд» имели устройства для накатки резьбы, для быстрого сверления отверстий, нарезания шлицев, фрезерования четырех плоскостей. Получили также распространение автоматы системы «Brawn and Sharp» и др.

Технический прогресс станкостроения привел к созданию в 90-х годах XIX в. многошпиндельных станков-автоматов; их появление было вызвано стремлением максимально увеличить число одновременно работающих инструментов и тем самым повысить производительность станка с помощью совмещения операций. В многошпиндельных автоматах могли включаться в работу десятки фасонно-отрезных, проходных и осевых инструментов. Однако в этот период станки такого типа еще не получили широкого применения .

Рост объема металлообработки заставил пересмотреть все ранее существовавшие средства резания металлов и вызвал значительное их усовершенствование. Особенно сильно на развитие технологии механической обработки подействовало изобретение в начале 900-х годов быстрорежущей стали, знаменовавшей крупный прогресс в инструментальном производстве. Эта сталь, впервые предложенная в 1898 г. американцами Тейлором и Уайтом, получила название быстрорежущей за свою способность сохранять режущие свойства при повышенных скоростях резания.

Резцы, изготовленные из быстрорежущей стали, впервые демонстрировались на Всемирной промышленной выставке в Париже в 1900 г. С применением этих резцов скорость резания почти в 5 раз превысила скорости, допускаемые для резцов из обычной углеродистой стали. Добавка в сталь специальных легирующих элементов (марганца, хрома, вольфрама) значительно повышала твердость инструмента и его красностойкость, т. е. способность сохранять свои рабочие свойства при нагреве, возникающем в процессе обработки. Твердость новой стали не падала даже при нагреве до красного каления (при температуре 600° С). Многочисленные опыты, проведенные в 1901 -1906 гг., привели Тейлора и Уайта к заключению, что лучшим быстрорежущим сплавом является сталь с содержанием 0,67% углерода, 18% вольфрама, 5,47% хрома. 0,11% марганца, 0,29% ванадия и 0,043% кремния. Быстрорежущую сталь такого состава закаливали нагревом до очень высокой температуры (свыше 900° С) с последующим быстрым охлаждением в воде. Инструменты, изготовленные из быстрорежущей стали, вскоре получили широкое распространение.

Еще большую твердость и износостойкость придали режущему инструменту твердые сплавы, в которых карбиды легирующих элементов - вольфрама, молибдена и хрома составляли основу рабочей части инструмента. В 1907 г. англичанину Хейнсу был выдан патент на твердый сплав из литых карбидов, названный им «стеллитом». В последующие годы создаются и другие твердые сплавы подобного типа, не получившие, однако, в то время большого распространения, так как при высокой твердости и красностойкости они были весьма хрупкими.

Применение инструментов из быстрорежущей стали и твердых сплавов привело к постепенному изменению конструкции оборудования, к появлению так называемых «быстрообрабатывающих станков» . Чтобы полностью использовать режущие свойства новых инструментов, конструкторы при проектировании станков должны были обеспечить большие усилия резания и большие скорости, чем при работе резцами из углеродистой стали. Потребовались большая мощность привода станков, большее число ступеней скоростей, более быстрое управление и обслуживание. Известный технолог проф. А. Д. Гатцук в предисловии к книге Ф. Тейлора писал, что появление быстрорежущей стали открыло новую эру в механическом деле .

Технический прогресс в области металлообработки и станкостроения был неразрывно связан с новой областью теоретических и экспериментальных исследований, составивших впоследствии теорию резания металлов.

Начало научного изучения процессов механической обработки металлов было положено работами известного русского ученого, профессора И. А. Тиме. Проведенные им в 60-80-х годах исследования процесса стружкообразования при разных подачах и скоростях резания позволили выявить ряд закономерностей скалывания и надлома металлической стружки, сформулировать теоретические основы резания металлов и установить некоторые законы резания.

Результаты многочисленных исследований И. А. Тиме были изложены в его оригинальной работе «Сопротивление металлов и дерева резанию. Теория резания и приложение ее к машинам-орудиям» (1870 г.). Основные положения теории резания были в дальнейшем развиты Тиме в «Ме- муаре о строгании металлов», изданном в 1877 г. на русском, французском и немецком языках, а затем в капитальном двухтомном труде «Основы машиностроения» . Вопросы механики процесса резания и динамики металлообработки подробно изучал проф. К. А. Зворыкин. Его книга «Работа и усилие, необходимые для отделения металлических стружек» (1893 г.) была ценным дополнением к трудам И. А. Тиме и представляла важный вклад в техническую литературу. К проблеме рационального резания металлов было привлечено внимание и ряда других русских ученых-машиностроителей: А. В. Гадолина, П. А. Афанасьева, А. П. Гав- риленко. В Европе явления, происходящие при резании металлов, плодотворно изучали Кларинваль, Кокилья, Жоссель, Треска (во Франции), Гарт, Гартинг, Вибе (в Германии) и др.

Крупную роль в развитии теории и практических методов резания металлов сыграли работы американского инженера Ф. Тейлора. В 80-х годах им были поставлены массовые опыты по определению оптимальных углов резания, форм резцов и скоростей резания металлов. На основании почти 50 тыс. опытов, проведенных за 26 лет, было установлено, что каждая конкретная задача включает до двенадцати независимых переменных (качество металла, толщина стружки, охлаждение резцов и т. д.). Изучая зависимость скорости резания и стойкости режущего инструмента, анализируя затраты времени на каждую операцию, Тейлор эмпирически, а затем и теоретически установил наивыгоднейшие режимы резания при металлообработке, что имело большое практическое значение для машиностроения. Поскольку детальные расчеты режимов резания оказались довольно трудоемкими, Тейлор со своими сотрудниками составил специальные «счетные линейки для машиностроительных заводов», с помощью которых рабочие-станочники могли определять необходимые режимы резания. Исследования Тейлора, изложенные им в книге «Искусство резать металлы» , были затем дополнены и обобщены в его работе об основах организации промышленных предприятий , которая впоследствии послужила одним из обоснований «потогонной» системы организации капиталистического производства.

Важной особенностью техники машиностроения конца XIX - начала XX в. было повышение точности производства машин. Во многом это было связано с работами известного английского станкостроителя Д. Витвор- та, внесшего в машиностроение принципы и методы точной работы Вит- ворту принадлежит изобретение первой измерительной машины; он ввел в практику машиностроения измерительные калибры и добился возможности измерять обрабатываемые поверхности с точностью до сотых, а позже и до тысячных долей миллиметра. Калибры Витворта, допускавшие точность пригонки машинных деталей порядка одной десятитысячной доли дюйма, составляли уже в 80-90-х годах неотъемлемую принадлежность каждого крупного машиностроительного завода в Европе и Америке. В последние годы жизни Витворта его предприятие могло изготавливать измерительные машины, обеспечивавшие точность до одной миллионной доли дюйма. На заводе Витворта были впервые реализованы принципы стандартизации и взаимозаменяемости резьбы на винтах, нашедшие впоследствии широчайшее применение в машиностроении и ставшие основой создания унифицированных и стандартных деталей и узлов машин.

Изготовление многочисленных деталей и частей машинного оборудования на специализированных и высокопроизводительных металлорежущих станках с соблюдением методов точных измерений, на прочной основе нормалей, стандартов и принципов взаимозаменяемости деталей подготовило техническую базу для перехода машиностроения к серийному и массовому производству изделий.

Станкостроение первоначально развивалось преимущественно в старых машиностроительных центрах. На размещение станкостроительных заводов оказывает влияние трудоемкость...

Станкостроение . Станкостроение специализировано на изготовлении автоматических станков и линий, агрегатных станков, гибких производственных систем, станков с числовым...

Станкостроение является базой научно-технического прогресса всего машиностроения. … Большое развитие станкостроение получило во многих районах.

Итак, среди машиностроительных центров наиболее крупными являются: Самарский (станкостроение , производство подшипников, самолетостроение...

Основные сведения. Краткий обзор истории отечественного станкостроения . Производство примитивных станков известно с давних времен.

Наиболее быстро развиваются электротехническое машиностроение, приборостроение, станкостроение . Многие производства являются металлоемкими...

В состав завода точного станкостроения в осн. входят механосборочные цехи со вспомогат. и обслуживающими помещениями.

Станкостроение . Бурное развитие машиностроения было связано, прежде всего, с быстрым ростом станкостроения - основой производства машин машинами.

В Поволжье развиты станкостроение и приборостроение, производство подшипников; автостроение; речное судостроение; тракторостроение и сельскохозяйственное...

...(драги для золотодобывающей промышленности), подъемно-транспортное машиностроение (мостовые краны), станкостроение , электротехническое машиностроение...

Вглядитесь в окружающую вас жизнь. По улицам городов и сел спешат потоки автомашин. Плывут стрелы башенных кранов над строящимися жилыми массивами. Оставляя тонкий «тающий» след, проносится над облаками воздушный лайнер. В космосе, в воздухе, на земле и под водой несут службу механизмы, созданные человеком, а значит, и детали этих механизмов, сделанные умелыми руками станочников.

Машиностроение это одна из основ промышленности. Без машин немыслима жизнь человека в современном обществе. Уголь, нефть, руда, электроэнергия добывают с помощью машин-молотов, прессов, станков. Не зная истоков возникновения истории развития профессии станочника, невозможно осмыслить сложность и значимость этой профессии.

Так как в течение всего развития станочного ремесла появились новые прогрессивные открытия в станкостроении, что вызывает рост промышленного производства

Развитие станкостроения в России.

«Все Русские ремесленники превосходны, очень искусны и так смышлены, что все, чего сроду не видывали, не только не делывали с первого взгляда поймут и сработают столь хорошо, как будто с малолетства привыкли, в особенности турецкие вещи: чепраки, сбруи, сверла, сабли с золотой насечкой».

Так писал в своем дневнике один из сподвижников Лжедмитрия литератор и военный человек по имени Маскевич, вместе с ним принимавший в 1611 г. участие в походе на Москву.

Разумеется, шляхтича-завоевателя в первую очередь интересовали золототканые чепраки и дорогая сбруя, но сметливость и деловое умение Русского мастерового он заметил верно. Наши отечественные мастера, особенно те из них, что работали по металлу, всегда поражали и соплеменников, и заморских гостей своим мастерством и выдумкой. Вспомним, как описал Н. Лесков одного из таких людей - знаменитого тульского кузнеца Левшу, сумевшего «английскую блоху»- миниатюрный автомат - игрушки - «на подковы подковать». Произведение Н. Лескова не выдумка. В Туле на самом деле были искуснейшие мастера, особенно на оружейном заводе, прославившиеся изготовлением уникального оружия, глядя на него, и сегодня поражаешься филигранному владению русскими мастерами техники обработки металла. Такие способности Русских самоучек внушали, надо сказать, описание некоторым иностранцам, посетившим нашу страну.

Конечно, в условиях отсталого крепостного хозяйства, а еще ранее в условиях преодоления монголо-татарского ига, использование достижений и изобретений наших умельцев было ограничено очень узкими рамками. Но эти достижения хранились в памяти народной, то и дело возрождались в специальных поселениях ремесленников, потомственных мастеров.

Говоря о металлообработке в России, нужно помнить, что оно особенно в IX-X веках - почиталось искусством, а не ремеслом. В глубь веков уходят и отечественные традиции кузнечного дела, мастерства, стоящего рядом со станочным.

Ковали в Древней Руси и предметы домашнего обихода, и боевое оружие. В Киеве в XII веке кузнецы представляли собой весьма почетный слой населения, пользовавшийся привилегиями.

История возникновения централизованного Русского государства во главе с Москвою, история русского народа неотделимы от его борьбы за независимость, борьбы против иноземных поработителей. Одержаны эти победы были благодаря силе и стойкости простых людей, их стремлению сохранить свой уклад жизни, сберечь родную землю. И вместе с тем благодаря русскому оружию.

КЛАССИФИКАЦИЯ И СИСТЕМА ОБОЗНАЧЕНИЯ СТАНКОВ 3

ШЛИФОВАНИЕ 6

ИНСТРУМЕНТ, ПРИМЕНЯЕМЫЙ ПРИ ШЛИФОВАНИИ 6

КОМПОНОВКА МЕХАНИЧЕСКИХ ЦЕХОВ 9

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ 15

КЛАССИФИКАЦИЯ И СИСТЕМА ОБОЗНАЧЕНИЯ СТАНКОВ

Металлорежущие станки в зависимости от вида обработки делят на девять групп (табл 1), а каждую группу - на десять типов (под­групп), характеризующих назначение станков, их компоновку, степень автоматизации или вид применяемого инструмента. Группа 4 предназначена для электроэрозионных, уль­тразвуковых и других станков.

Обозначение модели станка состоит из со­четания трех или четырех цифр и букв. Первая цифра означает номер группы, вторая – номер подгруппы (тип станка), а последние одна или две цифры – наиболее характерные технологи­ческие параметры станка. Например, 1Е116 означает токарно-револьверный одношпиндельный автомат с наибольшим диаметром обрабатываемого прутка 16 мм; 2Н125 озна­чает вертикально-сверлильный станок с наи­большим условным диаметром сверления 25 мм. Буква, стоящая после первой цифры, указывает на различное исполнение и модер­низацию основной базовой модели станка. Буква в конце цифровой части означает моди­фикацию базовой модели, класс точно­сти станка или его особенности. Классы точности станков обозначают: Н – нормаль­ной; П – повышенной; В – высокой, А – осо­бо высокой точности и С – особо точные станки. Принята следующая индексация моде­лей станков с программным управлением: Ц – с цикловым управлением; Ф1 – с цифро­вой индексацией положения, а также с предварительным набором координат; Ф2 – с позиционной системой ЧПУ, ФЗ – с контурной системой ЧПУ; Ф4 – с комби­нированной системой ЧПУ. Например, 16Д20П – токарно-винторезный станок повы­шенной точности; 6Р13К-1 – вертикально-фре­зерный консольный станок с копировальным устройством; 1Г340ПЦ – токарно-револьвер­ный станок с горизонтальной головкой, повышенной точности, с цикловым про­граммным управлением; 2455АФ1 – коорди-натно-расточный двухстоечный станок особо высокой точности с предварительным набо­ром координат и цифровой индикацией; 2Р135Ф2 – вертикально-сверлильный станок с револьверной головкой, крестовым столом и с позиционной системой числового про­граммного управления; 16К20ФЗ – токарный станок с контурной системой числового йро» граммного управления; 2202ВМФ4 – многоце­левой (сверлильно-фрезерно-расточный) гори­зонтальный станок высокой точности с ин­струментальным магазином и с комбиниро­ванной системой ЧПУ (буква М означает, что станок имеет магазин с инструментами).

Станки подразделяют на широкоунивер­сальные, универсальные (общего назначения), специализированные и специальные.

Специальные и специализированные станки обозначают буквенным индексом (из одной или двух букв), присвоенным каждому заводу, с номером модели станка. Например, мод. МШ–245 – рейкошлифовальный полуавтомат повышенной точности Московского завода шлифовальных станков.

Таблица 1 – Классификация металлорежущих станков

Типы станков

Токарные

Автоматы и полуавтоматы

Токарноревольверные

Токарноревольверные автоматы

Карусельные

Токарные и лоботокарные

Многорезцовые и копировальные

Специализированные

Разные токарные

специализированные

одношпиндельные

многошпиндельные

Сверлильные и расточные

Настольно- и вертикальносверлильные

Полуавтоматы

Координатнорасточные

Радиально- и координатносверлильные

Расточные

Отделочнорасточные

Горизонтально сверлильные

Разные сверлильные

одношпиндельные

многошпиндельные

Шлифовальные, полировальные, доводочные, заточные

Круглошлифовальные, бесцентровошлифовальные

Внутришлифовальные, координатношлифовальные

Обдирочношлифовальные

Специализированные шлифовальные

Продольношлифовальные

Заточные

Плоскошлифовальные

Притирочные, полировальные, хонинговальные, доводочные

Разные станки, работающие абразивом

Электрофизические и электрохимические

Светолучевые

Электрохимические

Электроэрозионные, ультразвуковые прошивочные

Анодномеханические отрезные

Зубо- и резьбообрабатывающие

Резьбонарезные

Зубодолбежные для цилиндрических колес

Зуборезные для конических колес

Зубофрезерные для цилиндрических колес и шлицевых валов

Для нарезания червячных колес

Для обработки торцев зубьев колес

Резьбофрезерные

Зубоотделочные, проверочные и обкатные

Зубо- и резьбошлифовальные

Разные зубо- и резьбообрабатывающие

Фрезерные

Барабанно-фрезерные

Вертикально-фрезерные консольные

Фрезерные непрерывного действия

Продольные одностоечные

Копировальные гравировальные

Вертикальнофрезерные бесконсольные

Продольные двухстоечные

Консольнофрезерные операционные

Горизонтально-фрезерные консольные

Разные фрезерные

Строгальные, долбежные, протяжные

Продольные

Поперечнострогальные

Долбежные

Протяжные горизонтальные

Протяжные вертикальные для протягивания

Разные строгальные станки

одностоечные

двухстоечные

внутреннего

наружного

Разрезные

Отрезные, работающие

Правильно-отрезные

Ленточнопильные

Отрезные с дисковой пилой

Отрезные ножовочные

абразивным кругом

гладким или насечным диском

Трубо- и муфтообрабатывающие

Пилонасекательные

Правильно- и бесцентровообдирочные

Для испытания инструментов

Делительные машины

Балансировочные

ШЛИФОВАНИЕ

Шлифование- это процесс резания материалов с помощъю абразивного материала, режущими элементами которого являются абразивные зерна. Шлифование применяется как для черновой так и для чистовой и отделочной обработки.

При шлифовании главным движением является вращение режущего инструмента с очень большой скоростью. Чаще всего в качестве шлифовального инструмента используются шлифовальные круги. Абразивные зерна расположены в круге беспорядочно и удерживаются связующим материалом. Каждое абразивное зерно работает как зуб фрезы, снимая стружку.

Процесс резания при шлифовании имеет значительное отличие по сравнению с работой лезвийного инструмента. При вращательном движении круга, в зоне его контакта с заготовкой часть зерен срезает материал в виде очень большого числа тонких стружек (до 100 000 000 в минуту). Шлифовальные круги срезают стружки на очень больших скоростях- от 30 м/c и выше (порядка 125 м/c). Процесс резания каждым зерном осуществляется почти мгновенно. Обработанная поверхность представляет собой совокупность микроследов абразивных зерен и имеет малую шероховатость. Часть зерен ориентирована так, что не может резать обрабатываемую поверхность.

Такие зерна производят работу трения по поверхности резания. Абразивные зерна могут также оказывать на заготовку существенное силовое воздействие. Происходит поверхностное пластическое деформирование материала, искажение его кристалической решетки. Деформирующая сила вызывает сдвиг одного слоя атомов относительно другого. Вследствии упругопластического деформирования материала обработанная поверхность упрочняется. Но этот эффект оказывается менее ощутимым, чем при обработке металлическим инструментом.

Шлифование применяют в основном для заготовок из закаленных сталей. С развитием малоотходных технологий доля обработки металлическим инструментом будет уменьшаться, а абразивным увеличиваться.

ИНСТРУМЕНТ, ПРИМЕНЯЕМЫЙ ПРИ ШЛИФОВАНИИ

В промышленности находят применение как естественные, так и искуственные абразивные материалы.

К естественным абразивным материалам относятся алмаз, корунд, наждак и некоторые другие. Однако ввиду того, что свойства этих материалов нестабильны, а запасы их ограничины, основное применение в промышленности получили искуственные материалы. К искуственным абразивным материалам относятся электрокорунд, корборунд, карбид бора, синтетические алмазы и сверхтвердые материалы, полученые на основе кубического нитрида бора.

Электрокорунд представляет собой кристалический оксид алюминия Al 2 O 3 . В зависимости от содержания оксида алюминия различают три типа электрокорунда: нормальный электрокорунд (Э), содержащий до 95% Al 2 O 3, электрокорунд белый (ЭБ), содержащий 95-98% Al 2 O 3 , режущая способность которого значительно выше (на 30-40%), и монокорунд, содержащий 98-99% Al 2 O 3. Чем выше содержание кристалического оксида алюминия в электрокорунде, тем выше его режущие свойства. Электрокорунд применяется для шлифования сталей, чугунов и цветных металлов. Абразивные материалы из монокорунда предназначены для получитового и чистового шлифования деталей из цементированых, закаленных и высоколегированых сталей. Карбид кремния (карборунд SiC) по сравнению с электрокорундом обладает большей твердостью, но и хрупкостью. При дроблении его зерна имеют более острые кромки, что обеспечиват повышеную производительность обработки.

Карбид кремния выпускают двух марок. Карбид кремния черный (КЧ) содержит 95-97% SiC и применяется для обработки хрупких металлических материалов, цветных металлов и неметаллов. Карбид кремния, содержащий не менее 97% SiC, имеет зеленый цвет (КЗ) и обладает более высокими свойствами. Он премущественно используется для заточки твердосплавного режущего инструмента.

Карбид бора (B 4 C) отличается черезвычайно высокой прочностью, но очень хрупок и дорог. Используется в основном в виде несвязанных образивных зерен для доводки твердосплавного режущего инструмента, притирки, резки драгоценных камней и т.д..

Синтетические алмазы (СА) получают из графита (99,7%С и 0,3% примеси) в специальных камерах при давлении около 1,3 ГПа в присутствии катализатора и температурах 1200-2400 С. В зависимости от температуры получается различная форма кристаллов и окраска от черного цвета при низких температурах до светлого при высоких.

Синтетические алмазы имеют брльшую острату режущих кромок по сравнению с естественными и потому более производительны в качестве образивного инструмента. Алмаз имеет черезвычайно высокие режущие свойства, так как он является самым твердым веществом, обладает очень высокой теплопроводностью и износостойкостью, имеет малый коэффициент трения по металлу. Однако он недостаточно теплостоек (до 800С), что позволяет его использовать в соновном для обработки хрупких материалов, цветных металлов и неметаллов.

Кубический нитрид бора (КНБ)- эльбор, боразон и другие- синтетический сверхтвердый материал близок по твердости к алмазам, но имеет теплостойкость почти вдвое более высокую (до 1500С). Высокая теплостойкость и малое химическое сродство с железом позволяет успешно использовать его для обработки высокопрочных и закаленных сталей и сплавов на основе железа.

Зерна абразивных материалов являются режущими элементами абразивных инструментов.Основным видом абразиных инструментов являются шлифовальные круги, форма и размер которых определяет ГОСТ 2424-60, который предусматривает 22 пофиля с диаметрами от 3 до 1100 мм. Среди них наиболее часто применяются следующие формы: плоские прямые (ПП), плоские с выточкой (ПВ), чашечные цилиндрические (ЧЦ) и конические (ЧК), кольца (1К), тарельчатые (2Т) и т.д..

Все большее применение находит обработка с применением образивной ленты. Этот метод применяется для черновой, чистовой и отделочной обработки и во многих случаях обеспечивает значительное повышение производительности труда.

Свойства абразивных инструментов и их работоспособность будут определяться маркой абразивного материала, а также характеристиками инструмента: зернистостью абразива, видом связки, твердостью и структурой. По размеру абразивные зерна подразделяются на 26 номеров зернистости и делятся на шлифзерна(номера зернистости 200-16), шлифпорошки (номера 12-3) и микропорошки (номера М40-М5). Номер шлифзерна и шлифпорошка соответствуют размеру зерен в сотых долях миллиметра, а номер микропорошков показывает размер зерна в микрометрах.

Выбор зернистости абразивного инструмента определяется величиной припуска на обработку, чистотой обработанной поверхности и точностью обработки. Для грубой предварительной обработки и обработки вязких материалов рекомендуется крупнозернистые инструменты, обеспечивающие высокую производительность, но низкое качество. Отделочные работы производятся мелкозернистыми кругами.

Для соединения абразивных зерен в абразивный инстрмент служит связка. Связки подразделяют на органические и неорганически. Из неорганических связок наиболее часто применяются керамические (К) и силикатные (С).

Керамическая связка состоит из огнеупорной глины,полевого шпата, талька и жидкого стекла. Благодоря высокой прочности, водостойкости и жаропрочности она является самой распрастраненной. Недостатком керамической связки является значительная хрупкость.

Силикатная связка представляет собой жидкое стекло и имеет небольшую прочность. Круги на силикатной связке предназначены для обработки деталей в тех случаях, когда не допускается повышение температуры и нельзя применять смазочно-охлаждающие жидкости.

К органичиским связкам относятся вулканитовая (В) и бакелитовая (Б). Вулканитовая связка состоит из 70% каучука и 30% серы. Абразивные инструменты на такой связке обладают большой прочностью, но имеют малую теплостойкость. Связка применяется для узких фасонных кругов. Бакелитовая связка представляет собой синтетическую смолу. Круги, изготовленные на этой связке, прочны, эластичны, допускают большие окружные скорости, но могут применяться при температуре не выше 180С.

Алмазные круги состоят из стального, алюминиевого или пластмассового кольца (основания) и закрепленного на нем алмазного слоя толщиной 1,5-5,0 мм.

Абразивный инструмент должен обладать определенной твердостью. Под твердостью понимается способность связки удерживать абразивные зерна. В соответствии с этим разработана шкала твердости, согласно которой все аразивные делятся на 16 степеней твердости. Для каждого конкретного случая обработки необходимо подбирать инструмент определенной твердости. В круге повышенной твердости при работе продолжают удерживаться притупившиеся зерна, что приводит к повышению температуры в зоне резания и прижогу обрабатываемой поверхности. Такой круг требует частичной правки для восстановления режущей способности. Слишком мягкий круг будет сильно изнашиваться, при этом будут выкрашиваться зерна, не потерявшие еще своей остроты.

При подборе круга для данных условий обработки стремятся добиться "самозатачивания". В этом случае своевременно будут выкрашиваться затупившиеся зерна и открываться новые, острые.

В любом абразивном инструменте наряду с абразивными зернами и связкой имеются поры(пустоты), способствующие его охлаждению в процессе работы. Структура абразивного инструмента определяется количественным соотношением в нем зерен, связки и пор. Имеется 13 номеров структур. Чем больше номер структуры, тем меньше в единице объема зерен и больше пор.

Характеристики образивных кругов маркируются на нерабочей поверхности круга, где приводятся их условные обозначения: вид образивного материала, зернистость, форма, размер и допустимая максимальная скорость вращения.

В процессе работы щлифовального круга абразивные зерна изнашиваются и теряют режущую способность, а круг засаливается продуктами обработки. Для восстановления режущих свойств и геометрической формы производится переодическая правка круга. Наиболее качественная правка производиться алмазными инструментами.

Более грубая правка осуществляется шарошками, оснащенными монолитными твердосплавными дисками, металлическими дисками и звездочками из износосойких сталей или правочными кругами из карбида кремния, термокорунда т.д.

КОМПОНОВКА МЕХАНИЧЕСКИХ ЦЕХОВ

Правильное размещение оборудования является основным звеном в организации безопасной работы производственного участка и цеха. При размещении оборудования необходимо соблюдать установленные минимальные разрывы между станками, между станками и отдельными элементами здания, правильно определять ширину проходов и проездов. Невыполнение правил и норм размещения оборудования приводит к загромождению помещений и травматизму.

Расположение оборудования на площади цеха или участка определяется в основном технологическим процессом и местными условиями.

При автоматизированном производстве (комплексные автоматические заводы или цеха, автоматические линии, поточное производство) оборудование размещается по ходу технологического процесса в единую цепочку с соблюдением расстояний между оборудованием и конструктивными элементами здания. На автоматических и поточных линиях большой протяженности для перехода с одной стороны линии на другую устраивают переходные мостики.

При многостаночном обслуживании оборудование располагают с учетом максимально возможного сокращения расстояний между рабочими местами. Если по условиям технологического процесса необходимо предусмотреть стеллажи или столы для заготовок и готовых изделий, то для этого отводится дополнительная площадь в соответствии с особенностями производства.

Размещение металлорежущих станков, слесарных верстаков и другого оборудования в цехах холодной обработки принимается таким, чтобы расстояние между отдельными станками или группами станков были достаточными для свободного прохода рабочих, занятых. их обслуживанием и ремонтом. Во всех случаях размещение оборудования должно обеспечивать достаточное число проходов для людей и проездов для транспорта, обеспечивающих безопасность сообщения. Ширина проходов и проездов назначается в зависимости от расположения оборудования, характера движения, способа транспортирования и размеров деталей, но при всех условиях принимается не менее 1 м. Для перевозки грузов автомашинами устраиваются проезды шириной 3,5 м. Загромождение проходов и проездов, а также рабочих мест различными предметами не разрешается.

Проходы и проезды требуется содержать в чистоте и порядке, границы их обычно отмечаются белой краской или металлическими светлыми кнопками. Ширина рабочей зоны принимается не менее 0,8 м. Расстояние между оборудованием и элементами зданий, а также размеры проходов и проездов определяются нормами технологического проектирования механических и сборочных цехов машиностроительных заводов.

В единичном и мелкосерийном производстве часто оборудование размещается по группам станков (токарные, фрезерные, расточные, шлифовальные и т. п. станки); однако необходимо стремиться к тому, чтобы расположение оборудования исключало возможность возникновения в процессе работы встречных потоков материалов, полуфабрикатов и людей. Целесообразно устраивать в пролетах между оборудованием одностороннее движение. При транспортировании различных заготовок в проходах (особенно заготовок большой длины) нельзя допускать, чтобы транспортные средства и заготовки стесняли рабочую зону или выходили за границы проезда, прохода.

Рабочее место является первичным звеном производства, оно представляет собой определенный участок производственной площади цеха, предназначенный для выполнения одним рабочим (или бригадой) порученной работы, специально приспособленный и технически оснащенный в соответствии с характером этой работы. От того, насколько правильно и рационально будет организовано рабочее место, зависит безопасность и производительность труда. Как правило, каждое рабочее место оснащено основным и вспомогательным оборудованием и соответствующим инструментом. Отсутствие на рабочем месте удобного вспомогательного оборудования или нерациональное его расположение, захламленность создают условия для возникновения травматизма.

Рис. 1. Планировка рабочего места токаря

На рис. 1 приведена типовая организация рабочего места токаря-универсала. Рабочее место включает следующие принадлежности: тумбочку станочника для двухсменной работы 1, в каждом отделении которой хранится инструмент постоянного пользования и средства по уходу за станком; приемный стол 2 для размещения на нем тары с заготовками и обработанными деталями, нижняя полка стола используется для хранения принадлежностей к станку (патронов, люнетов и др.); деревянную решетку 3 под ноги, высота которой регулируется по росту станочника. По такой схеме целесообразно организовывать рабочие места и других станочников (фрезеровщиков, зуборезчиков, шлифовщиков и т. п.).

Рис. 2. Рабочее место сварщика для сварки малогабаритных изделий

Рабочее место сварщика, изображенное на рис. 2, предназначено для сварки малогабаритных металлоконструкций в серийном и мелкосерийном производствах. Оно укомплектовано необходимой оргоснасткой с учетом рекомендаций научной организации труда. В рабочее место входит: стол сварщика 2, стул 3, стеллажи для заготовок 1 и сварных узлов 6, два перемещающихся стола 11, подставка для подающего механизма 5, аппаратный шкаф 8, инструментальная тумбочка 9, аппарат 7 для сбора флюса, поворотный консольный кран 4 и ящик для флюса 10. Такое размещение оборудования обеспечивает удобную и устойчивую позу сварщика в процессе работы, снижает затраты времени на вспомогательные операции и физическую нагрузку, улучшает условия труда. Рабочее место снабжается приемниками вытяжной вентиляции у сварочных столов.

Рис. 3. План рабочего места контролера:

1,3 и 5 - столы контролера; 2 - тележка малая; 4 - поверочная плита; 6 и 7 - столы приборные; 8 - тумбочка инструментальная; 9 - шкаф инструментальный; 10 - стол приемный рольганговой секции; 11 - каретка-оператор

На рис. 3 приведен план рабочего места контролера, организованного с учетом требований НОТ. Контрольный пункт оборудован удобной оргоснасткой и оснащен требуемыми измерительными приборами в зависимости от обслуживаемого производства. Детали, подлежащие контролю, подаются на контрольный пункт и на любое рабочее место контролера и возвращаются после контроля на специальных транспортных средствах, что исключает ручной труд. Такая организация рабочего места повышает производительность труда и уменьшает утомляемость контролера.

Мероприятия по улучшению организации рабочих мест заключаются в рационализации трудовых движений и соответствующем оборудовании рабочего места. Технологический процесс не должен допускать непроизводительных и опасных трудовых движений и тем более опасных поз рабочего.

Пространство, в котором совершается основная часть трудовых движений, сравнительно невелико. Исследования показывают, что наиболее благоприятная зона для работ сидя определяется площадкой в 0,1 м2, когда предплечье поворачивается в локтевом суставе (руки полусогнуты). Другие зоны, например работа с помощью полностью вытянутых рук, менее благоприятны и вызывают быструю утомляемость. При работе стоя благоприятная зона также невелика. Осуществляя рационализацию трудовых движений, необходимо стремиться к обеспечению коротких и наименее утомительных движений. Следует помнить: чем больше сочленений участвуют в выполнении движения, тем оно, как правило, требует большей затраты сил. Поэтому при планировке рабочих мест и, в частности, при расстановке предметов организационно-технической оснастки необходимо предусматривать применение наиболее простых движений: движения одних пальцев, движения пальцев и запястья или движения пальцев, запястья и предплечья. Следует, по возможности, устранять такие движения, которые требуют участия не только плеча, но и всего корпуса.

При размещении на рабочем месте организационно-технической оснастки (стеллажей для заготовок и готовых деталей, инструментальной тумбочки, планшетов и пр.) или вспомогательного оборудования (поворотные краны, транспортеры и пр.) следует тщательно проверить по зонам досягаемости рук, насколько рационально установлен тот или иной предмет и какие виды движений будет при этом применять рабочий. Однако решение этой задачи не должно приводить к сближению оборудования, так как в противном случае рабочее место будет стеснено, и вероятность возникновения травматизма увеличится. На практике, используя опыт новаторов производства и соответствующие нормы при расстановке вспомогательного оборудования и оснастки, следует придерживаться такого принципа: заготовки и полуфабрикаты располагать на специальных стеллажах с левой стороны от рабочего, измерительный инструмент и тару для готовых деталей - с правой. Предметы, которыми пользуется рабочий чаще, располагают ближе к станку.

Планировка рабочего места зависит от многих условий - от типа оборудования, конфигурации и габаритов деталей, применяемой технологии, организации обслуживания, но для аналогичных работ можно установить типовые рациональные планировки рабочих мест. Следует отметить, что основное и вспомогательное оборудование не должно выходить за пределы площадки, отведенной для данного рабочего места, и устройство рабочего места должно учитывать рост и другие антропометрические данные каждого рабочего.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

    Справочник технолога-машиностроителя: В 2т. /Под ред. А.Г. Косиловой, Р.К. Мещерякова. – М.: Машиностроение, 1985. – 496 с. – Т.2.

    Справочник технолога-машиностроителя. – М.: Машиностроение, 1986.

    Справочник инструментальщика / И.А. Ординарцев, Г.В. Филиппов, А.Н. Шевченко и др.; Под общ. Ред. И.А. Ординарцева. – Л.: Машиностроение. Ленингр. отд-ние, 1987.

    развито история философииКнига >> Философия

    Доход, бурно развивается автомобиле- и судостроение, станкостроение . Общество может производить все, что... страны. Вся человеческая история сводится у Ростоу к истории развития техники. Развитие передовых стран Европы и США...

Стремясь вырвать страну из вековой отсталости, в том числе в области техники и производительности труда, Петр 1 выписывал из-за границы иностранных ученых и мастеров, посылал туда учится русских людей, зачастую незнатного звания. На металлообрабатывающих предприятиях центра страны и на Урале они создавали и вводили в строй новые технические средства, основали более современные технологии производства. Усиливалась деятельность мастеров-изобретателей «махин» для обработки металла давлением и резанием.

Сам Петр владел в совершенстве различными ремеслами, однако наиболее внимание уделял токарному искусству и немало времени проводил в своей личной «токарне».

Токарное дело в XVII и XVIII веках понимали весьма широко. Оно включало в себя, помимо точения еще и гравирование, фрезерование, строгание. Мастера токарного дела того времени являлись, по сути дела, квалифицированными инженерами, хорошо знакомыми с основным механики, математики и других наук. Многие из них прошли через основную в 1701 году в Москве навигационную школу. В 1704 г. в это учебное заведение держал экзамен молодой московской простолюдин Андрей Нартов, которому было суждено обессмертить свое имя.

Около двадцати пяти лет посвятил Андрей Нартов усовершенствованию и изобретению станков. Однако прославил себя наш соотечественник созданием механизированного суппорта к токарным станку.

Изобретение суппорта означало в полном смысле слова переворот в металлообработке. 1712 год - эта дата по своему не менее весома в истории человечества, чем год создания парового котла. Именно в 1712 году Андрей Константинович Нартов, руководитель токарной мастерской и преподаватель навигаторской школы, продемонстрировал разработанную им конструкцию токарно-копировального станка, действующего практически без участия человеческих рук: в этом станке появился новый конструктивный элемент, названный изобретателем «держалкой».

Что представлял собой станок?

Двухъярусная станина - «верстак» - была искусно выполнена А.К. Нартовым из мореного дуба (он своим руками изготовил все до одной детали), точеные ножи и верхние стойки. Приводился станок в действие фигурной рукояткой, вращение от которой передавалось на шестерню промежуточного вала.

Вал мог получать вращательное движение от ременного привода. Для этого был предусмотрен дополнительный шкив. На шпиндель станка сначала устанавливали образец-копир, затем - заготовку изделия.

Что же представлял собой суппорт Нартов А.?

Это был перемещаемый вдоль изделия и жестко закрепляемый в случае необходимости блок, в котором винтами зажимался резец. В ходе работы станка приковало внимание к Нартову.По распоряжению самого Петра! мастер был переведен на работу в личную царскую «токарю» в - Петербург. Ему были созданы условия для исследовательской и изобретательской работы. Талант простого русского человека был замечен и поддержан. На следующий год после изобретения суппорта Нартов продемонстрировал еще одно свое детище - новую модель копировального, или его называли в Петровскую эпоху гильоширного станка.

Приводился в действие он от шкива, размещенного вне станка. На шпиндель станка насаживался комплект фасонных копиров, что позволяло, работающему на этом станке, наносить на изделие несложные узоры.

Следующей большой работой изобретателя было создание комбинированного токарно-копировального станка. К разработке его конструкции мастер приступил в 1718 г. Когда чертежи были готовы, и Нартов приготовился к практическому изготовлению деталей и узлов, труд над станком был прерван. Андрей Константиновича послали за границу получить сведения о «гнутии дуба, употреблявшегося в корабельное строительство», а также познакомиться с состоянием металлообработки. Два года продолжалось путешествие Нартов. Перед отъездом Нартову было поручено заказать изготовление этого станка в Англии. Вернувшись в Россию, Нартов написал докладную записку Петру1, в которой перечислил все выполненные им за границей работы и вместе с этим сообщил, что заказать токарно-копировальный станок в Англии не удалось -- ни один из английских мастеров не взялся изготовить для него детали. Впоследствии Нартов сам с помощниками воплотил в металл и дерево свое изобретение. На это потребовалось изобретателю одиннадцать лет. Станок этот сохранился до сих пор и поражает совершенством своей кинематической схемы. Продольные перемещения суппорта в станке впервые совершенствовались автоматически. Ходовой винт его, сам по себе явившийся крупной технической находкой, имел различный шаг для копировальной и рабочей головок. Кстати, винт был нарезан Нартовым на специально созданном им винторезном станке. Заметим, что английский изобретатель моделей иного десятков лет спустя все еще нарезал аналогичные винты для своих станков вручную - и резьба при большой трудоемкости ее выполнения таким образом получалась все таки грубой и неточной.

Двадцатые годы XVIII века были более счастливыми в жизни и творчестве Нартова. Он изобрел станок для изготовления рельефов на изделиях -медалях, монетах, орденах, станок для нарезания зубьев у мелких шестерен, применяемых в часовом производстве.

После смерти Петра Нартов жил и трудился еще 30 лет. За это время он создал целый парк новых станков. Среди них сверлильный станок для глухих пушечных отливок, станок для нарезания продольных узоров на пушках, станок для обточки цапф, а также ряд новых режущих и измерительных инструментов, приборов.

Конструктивные основные идеи Нартова были воплощены при его жизни только в нескольких станках, настоящее же развитие получили в XIX веке, реализованы в российском станкостроении. Некоторые из этих идей не потеряли своего значения и сегодня.

Многие специальные станки появились и были усовершенствованы на Тульском оружейном заводе, основанном Никитой Антуфьевым (бывшим кузнецом), вошедшим в историю по фамилией Демидова. Опытные мастера этого завода Яков Батищев и Марк Сидоров создали несколько машин для оружейного производства. Все эти машины приводились в действие от водяного колеса. Так, для первичного чернового сверления заготовок ружейных стволов Сидоров первым построил машину, снабженную сверлами- штангами. Стволы в процессе обработки охлаждались водой.

Продолживший дело М. Сидорова, Я. Батищев создал обтиральную машину для чистки стволов. Этот мастер первым в русском станкостроении соединил в единую цепь с общим приводом сверлильный, обтиральный и шустовальный станки. Механизация же процессов шустования и обтирания значительно облегчила тяжелые работы. Станок Батищева имел 12 специальных напильников вогнутой формы, механически прижимавшихся к стволам.

Изобретения Батищева намного опередили свое время. Но они подобно изобретениям Нартова долго лежали под спудом, не находя широкого применения в родной стране. После смерти Петра 1 интерес власти к развитию отечественной металлообработки пропал. Созданные на Тульском и других заводах машины постепенно приходили в негодность, о них перестали заботиться: забывались технические достижения начала века.

Забывались ли? Нет, они жили в памяти хоть и немногих, но верных приверженцев отечественного станкостроения. В 1785 году тульский оружейник Алексей Сурнин помощью инструментальщика Латова изготовил машину для точения «замочных лодышек».

В начале XIX века на небосклоне отечественной технической мысли ярко загорается звезда еще одного изобретателя и станочника- Павла Дмитриевича Захавы. На том же Тульском заводе он, начиная с 1810 года, руководил конструированием и производством новых станков, в основном токарных. Назовем наиболее удачные конструкции изобретателя: станок для вторичного и окончательного сверления ружейных каналов, станок для нарезания резьбы, станок для сверления трубки штыка, протяжной станок, полировочный станок.

Одна из этих новинок, а именно станок для окончательного сверления ружейных стволов впервые не имел деревянных частей Станина была цельнометаллической, в машине применен реверс.

В изобретении токарных станков Захава добился особенно больших успехов. В них, как и машинах Нартова, был использован механический суппорт, скользящий люнет (подвижная опора). Резец на станке Захава стал обрабатывать как цилиндрические, так и конические поверхности.

Для своевременной остановки хода резца станок был снабжен и снова впервые! Автоматическим отключающим механизмом.

При непосредственном участии Захавы на Тульском заводе было изготовлено свыше ста металлорежущих станков, которые в значительной части были отправлены и другие отечественные предприятия.

Одновременно с Захава в России работали еще два изобретателя станков Ефим Алексеевич и его сын Мирон Ефимович Черепановы. В тридцатые годы прошлого века отец и сын создали в Нижнем Тагиле ряд горнорудных машин и паровых станков сверлильных, винторезных, «гвоздарных» и токарных.

В канун Отечественной войны: 1812 г. появился в России первый штамповочный молот - машина для обработки металла давлением. С этой же поры начинается хоть и медленный, но неуклонный рост отечественной металлообрабатывающей и станкостроительной промышленности. В середине прошлого века в России уже насчитывалось 25 машиностроительных заводов, а в 1861 г. их было более ста.

Однако количественный рост предприятий не означал качественных сдвигов в станочном деле. Токарный станок по прежнему оставался главным среди машин орудий. Технических прогресс, шагающий по основным капиталистическим странам, словно обходил стороной Россию, обрекая ее на второразрядную роль в мировой экономике.

В 1912 г. общая потребность страны в станках была удовлетворена внутренним производством только на 26%.

Доля собственного станкостроения в пополнении станочного парка неуклонно снижалась

Подлинными хозяевами на станочном рынке России были Германия и другие западные страны.