Микроорганизмы под названием бактерии окружают нас повсеместно. Источники для ознакомления с этими простыми, но интересными организмами можно найти буквально везде. Даже на руках, во рту, в моче, слюне человека живут миллионы интересных образцов. Разместив бактерии под микроскопом, можно увидеть их строение, особенности, понять, по каким признакам они классифицируются.

Можно посмотреть видео, демонстрирующие увеличение данных организмов под микроскопом. Это современные устройства, позволяющие рассмотреть невидимые человеческому глазу частицы. Они дают возможность достаточно точно узнать, как устроен мир одноклеточных, а также что такое бактерия, максимально подробно.

Разновидности микроскопов

Познакомиться с импровизированным видео под увеличительными линзами, где бактерии двигаются, можно в лабораторных и домашних условиях. Все зависит от наличия специального оборудования. Микроскопы, позволяющие производить наблюдение за организмами, имеют свою классификацию, построенную на основе конструкции оборудования, предоставляемых им возможностей. Выделяют следующие доступные виды:

  • обычный (биологические лаборатории, классы образовательных учреждений);
  • фазово-контрастный (исследует бактерии в моче);
  • темнопольный;
  • электронный.

На фото продемонстрированы данные категории для исследования бактерий, которые можно приобрести. Ознакомившись с видео, можно без труда научиться пользоваться каждой моделью, не допуская ошибок.

Выбор подходящей модели

Многих начинающих исследователей интересует, какой прибор выбрать, чтобы рассмотреть кисломолочные, а также другие распространенные категории бактерий.

Бюджетный сегмент микроскопов, демонстрирующих 640-кратное увеличение, не даст того эффекта, который можно оценить на видео, сделанном более мощным микроскопом. Бактерии в моче, к примеру, можно увидеть только под линзами оборудования, увеличивающим в 1000 крат и больше.

Под линзами обычного микроскопа будут показаны не совсем четкие палочки, нити, шарики с отсутствием четких контуров, сероватого оттенка.

Фазово-контрастный тип прибора работает на основе определения различной плотности частиц. Данный микроскоп, позволяющий осуществлять наблюдение и увеличение бактерий, окрашивает элементы в светло-серый или темно-серый оттенок. На таком видео можно рассмотреть многократное увеличение бактерий, находящихся в моче.

Темнопольный микроскоп позволяет разглядеть кисломолочные бактерии (увидеть, как они выглядят, можно также на фото). Его преимущество состоит в рассеивании света, идущего не через линзу напрямую, а сбоку. Прибор также позволяет понять, какой актуальный характер движения бактерий.

Электронная микроскопия: эффективный метод

Данный вид микроскопов следует выделить отдельно, так как на просторах разреженного пространства гибнут живые микроорганизмы, поэтому увидеть их непросто. Его изобретение стало настоящим прорывом, позволившим внести коррективы в изучение живых микроорганизмов. Много десятилетий назад оптические микроскопы не давали возможность узнать, как устроена бактерия, и рассмотреть наличие ядра или протоплазмы.

При помощи электронного устройства ученым удалось проследить процесс деления клетки. На фото можно увидеть бактерию стафилококка, часто присутствующую в моче человека и вызывающую серьезные заболевания, в состоянии деления. Исследования дали возможность снимать видео для изучения процессов на базе образовательных учреждений.

Что можно рассмотреть?

Каждый теперь может увидеть фото и видео всех известных науке бактерий в свободном доступе. Кисломолочные - это кокки и палочки, бактерии в моче - правильной формы шары (стафилококки), прямые палочки, нити (протеусы). Особенно хорошо они видны под электронным прибором на фото.

Исследуемый материал нужно фиксировать специальным методом, чтобы избежать быстрого распада и снизить уровень токсичности (второе актуально для исследования не всегда безопасных микроорганизмов в моче).

Увидеть бактерии в электронный микроскоп можно после предварительного нагрева стекла, на который нанесен образец для рассмотрения. Не обязательно покупать горелку – бытовые источники огня и стандартный пинцет позволят это сделать. В этих же целях можно использовать метиловый спирт или ацетон. Химическая фиксация требует осторожности (лучше рассмотреть для начала видео). Далее производится окраска образца с последующим увеличением его под микроскопом (наиболее распространенная краска - метиленовая синяя).

Учитывая, какой вид бактериальных организмов был окрашен, можно увидеть палочки или шарик. Они могут присутствовать в открытых ранах или моче человека.

Подвижные и неподвижные организмы

Под электронным или обычным микроскопом с многократным увеличением будет видно движение клеток. Независимо от того, какой тип бактерий исследуется – шары-стафилоккоки (находящиеся в моче) или кисломолочные, с жгутиками или без – они не останутся неподвижными. Возникает закономерный вопрос: почему двигаются те образцы, у которых жгутиков от природы нет?

Причина - не самостоятельное движение, как у имеющих дополнительные элементы, позволяющие шевелиться, а броуновское движение (беспорядочное, теплового типа). Палочки и нити могут:

  • пересекать поле,
  • замирать,
  • складываться вдвое,
  • образовывать спираль.

Имея под рукой микроскоп для наблюдения за различными бактериями, можно исследовать свою бытовую сферу и физиологические жидкости - микроорганизмы в моче, слюне. Интересное рядом, но увидеть скрытую от посторонних глаз жизнь непросто. С одной стороны, доступны различные категории видео и фото, но гораздо эффективнее провести эксперимент самостоятельно.

Если вы заглянете в любой реальный или виртуальный магазин развивающих игрушек, то среди множества товаров непременно отыщете и детские микроскопы . Кажется, что мода на них возникла совсем недавно, в эпоху тотального «развивания» детворы едва ли не с пеленок. Но это не совсем так. Подобные игрушки были известны еще в XVIII веке. Тогда их называли «блошиными стеклами». В яркую картонную трубочку длиной около 2 см вставлялась с одной стороны двояковыпуклая линза, а с другой – плоское стекло с прикрепленным к нему объектом. Например, блохой (отсюда и «блошиное стекло»). Стоили такие игрушки недорого и пользовались большой популярностью. Современные детские микроскопы тоже весьма популярны.

Для чего малышу микроскоп?

Среди дошкольников отыскать тех, кого не интересует устройство всего живого на Земле, очень не просто. Ежедневно дети задают десятки сложнейших вопросов своим мамам и папам. Любознательных малышей интересует определенно все: из чего состоят животные и растения, чем жжется крапива, почему одни листочки гладкие, а другие – пушистые, как стрекочет кузнечик, отчего помидор красный, а огурец – зеленый. И именно микроскоп даст возможность найти ответы на многие детские «почему». Куда интереснее не просто послушать мамин рассказ о каких-то там клетках, а посмотреть на эти клетки собственными глазами. Трудно даже представить, насколько захватывающие картинки можно увидеть в окуляр микроскопа , какие удивительные открытия сделает ваш маленький естествоиспытатель. Занятия с микроскопом помогут малышу расширить знания об окружающем мире, создадут необходимые условия для познавательной деятельности, экспериментирования, систематического наблюдения за всевозможными живыми и не живыми объектами. У малыша будет развиваться любознательность, интерес к происходящим вокруг него явлениям. Он будет ставить вопросы и самостоятельно искать на них ответы. Маленький исследователь сможет совсем иначе взглянуть на самые простые вещи, увидеть их красоту и уникальность. Все это станет крепкой основой для дальнейшего развития и обучения. Нужно отметить, что очень важна заинтересованность кого-нибудь из взрослых: мамы, папы, старших брата или сестры. Тогда они смогут передать свою увлеченность малышу . Сам кроха, если, конечно, он не прирожденный биолог, вряд ли будет долго возиться с микроскопом без вашей активной помощи и участия.

Какие они бывают

Детский микроскоп ничем принципиально не отличается от микроскопа биологического. Это не макет и не игрушка, а действующий оптический прибор. И, часто, такие микроскопы имеют очень приличную оптику и большое увеличение. Давайте рассмотрим типы микроскопов и попробуем определить их основные плюсы и минусы. Итак, чаще всего в магазине вы встретите так называемый прямой биологический микроскоп (монокулярный, т.е. имеющий один окуляр). С похожим прибором сталкивался любой из нас на уроках школьной биологии. Это классический вариант микроскопа , только оформлен он необычно и весело, чтобы понравиться своему маленькому хозяину (может быть раскрашен в яркие цвета или иметь не совсем обычную форму). С его помощью можно рассматривать как прозрачные объекты (на предметных стеклах в проходящем свете), так и непрозрачные (в отраженном свете). Важная характеристика любого микроскопа – его увеличение. Обычно микроскопы имеют три сменных объектива. Но увеличивает не только объектив. Окуляр тоже имеет свое собственное увеличение (как правило, 10 или 20 крат). Для того, чтобы посчитать общее увеличение микроскопа , нужно увеличение окуляра (всегда написано на окуляре) умножить на увеличение объектива. Так, если микроскоп имеет окуляр с 20-тикратным увеличением и объективы 4, 10 и 40, при смене объективов получаем увеличения 80, 200 и 800 крат. Современные световые микроскопы могут создавать увеличение в 1500–3000 крат. Стоит ли покупать прибор с таким увеличением в качестве первого микроскопа ребенку дошкольнику? Вероятно, не стоит. Даже для очень серьезных экспериментов малышу вряд ли понадобится увеличение больше 400–600 крат. Микробов, правда, рассмотреть не удастся. Но, если кто-нибудь из родителей не имеет специального образования, вы, скорее всего, не увидите их и в «крутой» микроскоп . Для приготовления микробного препарата нужно использовать специальные методы окраски мазка, очень мощное освещение и иммерсионные объективы (объектив с большим увеличением погружается в специальное иммерсионное масло, обычно кедровое, для устранения рассеивания света). Но расстраиваться нет причин. И без микробов маленькому биологу с головой хватит объектов для изучения. Очень хорошим выбором для малыша станет стереомикроскоп (бинокулярный). Он имеет два расположенных под углом друг к другу окуляра, что создает стереоизображение. И хотя такие микроскопы дают относительно небольшие увеличения (до 100), зато позволяют рассматривать практически любые предметы, которые нас окружают. Это поможет малышу увидеть многие обыденные вещи совсем в ином свете. Для такого микроскопа не нужно мощное освещение. И, кроме всего прочего, бинокулярный микроскоп равномерно нагружает оба глаза, что больше подходит для неокрепшего детского зрения, чем монокуляры. Многие современные микроскопы имеют собственную встроенную подсветку. Обратите на это внимание при выборе прибора. Дополнительный источник света позволяет лучше осветить объект, а, значит, и лучше его рассмотреть. Есть совсем маленькие, «карманные» микроскопы с небольшим увеличением. Их можно носить с собой на прогулку и рассматривать растения и насекомых прямо на лугу или в лесу. Если у вас дома есть компьютер, можно обзавестись цифровым микроскопом . Эта дорогая современная игрушка тоже имеет свои достоинства и недостатки. Главное достоинство – возможность вывода изображения на экран монитора. Это превращает микроскоп в подобие увлекательной компьютерной игры. Ребенок может сохранить полученное изображение, отредактировать, раскрасить, подписать при помощи простого графического редактора. А еще можно записывать видеоизображение и даже сделать свой собственный видеофильм о микромире. Микроскоп снимается с подставки, с ним можно пройтись по комнате, поднося к любым предметам и получая на экране их увеличенное изображение. В каком-то смысле такой микроскоп превращается из исследовательского прибора в творческий инструмент. Хорошо ли это? И да, и нет. Если ваш малыш – натура творческая, цифровой микроскоп наверняка придется ему по душе. Если же кроха скорее естествоиспытатель, стремящийся постигнуть тайны мироздания, лучше приобрести для него обычный микроскоп . Вся захватывающая суть микроскопа именно в том, что смотришь в окуляр. Словно заглядываешь одним глазком в неведомый и удивительный мир, другую вселенную…

Оборудуем лабораторию

Для того чтобы занятия с микроскопом не наскучили малышу , организуйте их, как увлекательную игру, добавив известную долю таинственности. Пусть ребенок представит себя настоящим ученым-исследователем. А для этого ему понадобится мини-лаборатория. Выделите малышу полку, где будет стоять микроскоп , храниться образцы и необходимые инструменты для детских исследований. Обычный письменный стол может в считанные минуты превратиться в рабочий уголок. Только непременно позаботьтесь о хорошем освещении. Это снизит неизбежную нагрузку на детские глаза: чем лучше освещен объект, тем легче его разглядеть. Так что лучшее место для микроскопа – возле окна. Да еще прибавьте к этому яркую настольную лампу. Сразу приучайте малыша поддерживать порядок на рабочем месте (в лаборатории всегда должен быть порядок!), а после занятий все за собой убирать. Дайте ребенку всевозможные баночки и коробочки, в которых он сможет хранить свои объекты для исследования и необходимый инвентарь. Кроме самого микроскопа , вам понадобятся предметные и покровные стекла, пипетки, пинцет, игла. А также некоторые вещества: дистиллированная вода, спирт, водный раствор йода (для окраски). Объясните малышу правила безопасности и строго требуйте их соблюдения. Все-таки микроскоп (даже детский) – не игрушка, а сложный оптический прибор. И колоть орехи им не стоит. Также не обязательно бездумно крутить все подряд винты. Делать это нужно осознанно и с определенной целью. Сразу расскажите малышу , что и для чего в микроскопе предназначено и научите кроху все называть своими именами, а не «штучками» и «колесиками». Замечено, что даже пятилетние малыши быстро осваиваются с микроскопом : подбирают нужное увеличение и наводят резкость, рассматривая все, что попадается под руку. Первое время не оставляйте малыша с микроскопом один на один. Рассматривать предметы в отраженном свете при небольшом увеличении ваш маленький микроскопист научится быстро. А вот работы с предметными стеклами лучше ему самому пока не доверять, а делать это вместе. Во-первых, приготовление препарата подразумевает манипулирование острыми предметами (лезвие, игла) и химическими веществами. Во-вторых, предметные стекла – вещь крайне хрупкая. Неумелые пальчики могут их легко раздавить и пораниться. Научите малыша пользоваться пинцетом: отделять кусочки исследуемых объектов, класть их на предметный столик. Это будет развивать аккуратность и точность движений маленького исследователя.

Научная экспедиция

Раз уж малыш превратился в ученого-естествоиспытателя, значит, самое время отправиться в научную экспедицию за всевозможными образцами. Для такой необычной прогулки следует запастись несколькими баночками с крышками и коробочками, куда вы будете складывать свои находки. Очень удобна для этих целей коробка от конфет с пластиковыми ячейками или пластиковый лоток для яиц. Еще вам пригодятся маркер, чтобы подписать коробочки с образцами, пинцет и перочинный нож. Каждый раз можно организовывать «экспедиции» в разные места. Сегодня поищите образцы во дворе, завтра отправьтесь на луг, послезавтра – к водоему. Дайте малышу возможность самому решить, что он хочет забрать домой для изучения. И, конечно, подскажите ему несколько своих идей. Что же можно собирать? Абсолютно все! Листья, цветочки, лепестки, колючки растений, семена деревьев и цветов. Всевозможные почвы: чернозем, песок, глина. Очень интересно рассмотреть с малышом состав чернозема (хорошо видны остатки растений и даже живые насекомые), песчинки (красивые круглые кристаллики) и вязкую глину. Сразу станет понятно, где лучше расти растениям и почему. Соберите несколько видов лишайников. Они изумительно красивы под микроскопом . Интересно рассматривать мох. Часто в нем можно отыскать крошечных насекомых, которые практически не видны невооруженным глазом. Отломите по кусочку коры разных деревьев. Пригодятся перышки птиц. Зачерпните понемногу воды из лужи и заросшего водоема, прихватите немного водорослей и тины. Всю эту добычу рассортируйте и подпишите. Теперь вашему маленькому биологу хватит работы надолго.

Настраиваем микроскоп

В первую очередь необходимо настроить освещение. Для этого поверните зеркальце под предметным столиком таким образом, чтобы свет настольной лампы отражался от него и проходил через отверстие диафрагмы. Наблюдая в окуляр, поворачивайте зеркало до тех пор, пока все поле зрения (т.е. то, что вы видите в окуляр) не будет равномерно освещено. Теперь положите на предметный столик ваш препарат и зафиксируйте его специальными держателями. Установите объектив с самым маленьким увеличением. Глядя в окуляр, при помощи винтов настройки медленно поднимайте или опускайте тубус микроскопа до тех пор, пока в поле зрения не появится изображение препарата. Во время фокусировки можно осторожно подвигать препарат. Так вам будет легче правильно его расположить. Найдя изображение, вращайте винты еще медленнее, чтобы исследуемый объект стал максимально резким. После этого при необходимости установите большее увеличение. Все, можно рассматривать! Если к микроскопу прилагается встроенный осветитель, то зеркало вам не понадобится. Также нет необходимости его настраивать, если вы собираетесь рассматривать предметы в отраженном свете. В этом случае просто положите объект на предметный столик, который должен быть максимально освещен, и настройте фокус.

Как приготовить препарат

Для того чтобы рассмотреть какой-нибудь объект в проходящем свете, он должен быть очень тонким и прозрачным (иначе лучи света не смогут сквозь него пройти). Покровные стекла тщательно вымойте, сполосните в спирте (чтобы на них не оставалось пятен) и высушите. Если вы собираетесь исследовать какую-нибудь жидкость (например, молоко, сок или воду), просто капните пару капель на предметное стекло и сверху накройте покровным стеклом. Если объект исследования – кусочек растения, то при помощи острого лезвия срежьте с него тонкую, прозрачную пленочку, возьмите ее пинцетом и положите в центр покровного стекла. Сверху капните одну каплю воды. Капать воду сможет и малыш, а вот работать с лезвием, понятно, придется вам. Если ваш объект прозрачный, его нужно окрасить, добавив одну каплю водного раствора метиленового синего (в народе известен как «синька»). Теперь накрываем все это покровным стеклом, следя, чтобы под ним не осталось пузырьков воздуха, промакиваем лишнюю жидкость и изучаем под микроскопом . Такой препарат называется временным. После его изучения стекла моются и используются для последующих опытов. Если же вам хочется сохранить препарат надолго, перед тем как положить покровное стекло, тонкой иглой нанесите по его краю прозрачный клей, аккуратно придавите (стекла очень хрупкие и легко трескаются!) и оставьте сохнуть на сутки. Теперь это уже постоянный препарат, который можно рассматривать много раз. Кстати, к большинству микроскопов прилагаются уже готовые микропрепараты и слайды для рассматривания. Такие наборы можно купить и отдельно.

Что можно посмотреть?

Для рассматривания под микроскопом годится буквально все. Начните с небольшого увеличения. Рассмотрите вместе с малышом листочки собранных растений. Многие из них имеют волоски, которые очень интересно рассматривать в микроскоп . Хорошо видно строение листа, жилки. Посмотрите на лист мать-и-мачехи с одной и с другой стороны. Они совершенно разные: одна сторона опушена, другая – нет. Сначала пусть малыш определит это на ощупь, а потом увидит волоски в микроскоп . На листе крапивы можно рассмотреть те самые жгучие волоски, которые доставляют так много неприятностей голым детским ножкам и ручкам. Сорвите по листочку от каждого комнатного растения. Каждый по-своему интересен и неповторим. Если на подоконнике растут кактусы, пусть ради науки пожертвуют несколькими колючками. Очень красивы лепестки цветов. Можно рассмотреть пыльцу. Для этого перенесите ее мягкой кисточкой с цветка на предметное стекло. Если малышу

Мир вокруг нас удивительно многообразен и многолик. Каждому человеку интересно узнать, как устроено все то, что его окружает, и многие из нас стремятся приоткрыть завесу тайны микромира, который нельзя увидеть лицам неподготовленным и невооруженным специальным оборудованием. Расширить свой кругозор, узнать много нового и интересного и взглянуть на многие обыденные вещи с иной стороны всем любознательным поможет такой занимательный прибор и инструмент для профессиональных исследований как микроскоп.

С появлением микроскопа в Вашем доме Вы обретете свою минилабораторию, в которой Вы сможете проводить Ваши увлекательные опыты и эксперименты.

Что же в первую очередь стоит рассмотреть под микроскопом? Ниже перечислено несколько интересных и любопытных объектов для исследований.

Чтобы рассмотреть детально завораживающий микромир вполне подойдет даже сравнительно недорогая модель биологического микроскопа - Микромед С-11 .

Мед под микроскопом

Микроскоп поможет Вам сделать вывод о том, натуральный ли мед, который хранится у Вас на кухне и которым Вы спасаетесь ненастными вечерами.

Необходимо взять чуть-чуть меда, растворить его в воде и дать ему пару дней отстояться. После отстаивания нужно собрать пипеткой со дна банки осадок и перенести его на предметное стекло. Наблюдая за осадком под микроскопом, в натуральном меде Вы заметите пыльцу. По виду пыльцы можно определить, с каких растений пчелами собирался мед.

Смотря на мед в окуляр микроскопа, можно увидеть кристаллы глюкозы, которые похожи на звездочки и иголочки. Если же вместо этого Вы заметите кристаллы сахара в виде крупных частиц, то можно сделать вывод о том, что мед не натуральный.


Нужно взять полстакана кипяченой теплой воды, насыпать туда ложку сахара, размешать и добавить немного пекарских дрожжей из пакетика. Спустя несколько минут возьмите каплю раствора и перенесите ее на предметное стекло, положите сверху покровное стекло и понаблюдайте за исследуемым объектом при среднем и большом увеличении под нижним светом. Под микроскопом Вы увидите клетки круглой или вытянутой формы - это и будут дрожжи. При внимательном наблюдении Вы сможете заметить, как на некоторых клетках периодически начинают расти крошечные почечки - это новые клетки дрожжей. Они либо отрываются от материнских клеток, либо остаются, образуя маленькие цепочки.


Репчатый лук - это классика жанра. Многие из нас помнят, как в школе рассматривали препарат репчатого лука под микроскопом. Почему именно лука? Потому что у него сравнительно большие клетки, которые очень четко видны под микроскопом даже при небольшом увеличении. Для приготовления микропрепарата лука нужно разрезать луковицу на части и отделить один слой. От этого слоя отрезать маленький кусочек, а затем с вогнутой стороны этого кусочка луковицы при помощи пинцета отделить тонкую пленочку. Затем на предметное стекло капнуть кипяченой воды, опустить в нее пленочку и аккуратно расправить иголкой. После чего капнуть на препарат водного раствора йода (для окрашивания бесцветных клеток лука). Приготовленный объект для изучения необходимо накрыть покровным стеклом и промокнуть выступившую воду. И теперь можно приступать к исследованию растения.

Представленные выше объекты и многие-многие другие станут Вашими проводниками в мир удивительных микроскопических исследований! Мир, существующий на клеточном уровне, теперь открыт и Вам, стоит только

»: Повышенный уровень лейкоцитов, бактериальная инфекция, картофель содержит крахмал, насекомые переносят заболевания — эти и другие похожие высказывания приходится слышать отовсюду. Каждый день с экранов телевизоров, из уст знакомых, с полос газет и журналов нам в мозг поступает одна и та же информация. Информация, которая, как может показаться, является уделом лишь специалистов — медиков и биологов. Ведь именно они касаются этих вопросов в своей повседневной жизни. Простому же человеку достаются лишь только выводы из тех или иных исследований, сухие слова, не обладающие наглядностью. В этой статье я постараюсь рассказать просто о сложном. О том, как каждый может приблизить к себе неуловимый, на первый взгляд, мир клеток и микроорганизмов.

Вот уже два года, как я наблюдаю за этим миром у себя дома, и год, как делаю фотоснимки. За это время я успел увидеть собственными глазами, какие бывают клетки крови, что опадает с крыльев бабочек и молей, как бьётся сердце у улитки. Конечно, многое можно было бы почерпнуть из учебников, видеолекций и с тематических веб-сайтов. Единственное, что осталось бы не почерпнутым - это ощущение присутствия и близости к тому, чего не видно невооружённым глазом. То, что прочитано в книге или увидено в телепередаче, скорее всего, сотрется из памяти в весьма сжатые сроки. Что увидено лично в объектив микроскопа - останется с тобой навсегда. И останется не столько сам образ увиденного, сколько понимание, что мир устроен именно так, а не иначе. Что это не просто слова из книжки, а личный опыт. Опыт, который в наше время доступен каждому.

Что купить?

Театр начинается с вешалки, а исследование - с покупки оборудования. В нашем случае это будет микроскоп, ибо в лупу много не разглядишь. Из основных характеристик микроскопа «для домашних нужд» стоит выделить, конечно же, набор доступных увеличений, которые определяются произведением увеличений окуляра и объектива. Не всякий биологический образец хорош для исследования на больших увеличениях. Связано это с тем, что большее увеличение оптической системы предполагает меньшую глубину резкости. Следовательно, изображение неровных поверхностей препарата частично будет размыто. Поэтому важно иметь набор объективов и окуляров , позволяющий вести наблюдения во всем диапазоне увеличения: 10–20×, 40–60×, 100–200×, 400–600×, 900–1000×. Иногда бывает оправдано увеличение 1500×, достигающееся при покупке окуляра 15× и объектива 100×. Всё, что увеличивает сильнее, разрешающей способности заметно не прибавит, так как на увеличениях около 2000–2500× уже близок так называемый «оптический предел », обусловленный дифракционными явлениями.

Следующим немаловажным моментом является тип насадки. Обычно выделяют монокулярную, бинокулярную и тринокулярную разновидности. Принцип классификации основывается на том, «сколькими глазами» вы хотите смотреть на объект. В случае монокулярной системы вам придётся щуриться, постоянно меняя глаза от усталости при длительном наблюдении. Здесь вам на помощь придёт бинокулярная насадка, в которую, как и следует из её названия, можно глядеть обоими глазами. В целом, это более благоприятно скажется на самочувствии ваших глаз. Не следует путать бинокуляр со стереомикроскопом. Последний позволяет добиться объёмного восприятия наблюдаемого объекта за счёт наличия двух объективов, в то время как бинокулярные микроскопы просто подают на оба глаза одно и то же изображение. Для фото- и видеосъёмки микрообъектов понадобится «третий глаз», а именно насадка для установки камеры. Многие производители выпускают специальные камеры для своих моделей микроскопов, хотя можно использовать и обычный фотоаппарат (правда, при этом придётся купить переходник).

Наблюдение при больших увеличениях требует хорошего освещения в силу небольшой апертуры соответствующих объективов. Канули те времена, когда препарат исследовали в отражённом от зеркала свете. Сейчас микроскопы представляют собой комплексные оптико-механо-электрические приборы, в которых всецело используются достижения научно-технического прогресса. В современных устройствах имеется своя лампочка, свет от которой распространяется через специальное устройство - конденсор , - которое и освещает препарат. В зависимости от типа конденсора можно выделить различные способы наблюдения, самыми популярными из которых являются методы светлого и тёмного поля. Первый метод, знакомый многим ещё со школы, предполагает, что препарат освещается равномерно снизу. При этом в тех местах, где препарат оптически прозрачен, свет распространяется от конденсора в объектив, а в непрозрачной среде свет поглощается, приобретает окраску и рассеивается. Поэтому на белом фоне получается тёмное изображение - отсюда и название метода.

С темнопольным конденсором всё иначе. Он устроен так, что лучи света, выходящие из него, направлены в разные стороны, кроме непосредственно отверстия объектива. Поэтому они проходят сквозь оптически прозрачную среду, не попадая в поле зрения наблюдателя. С другой стороны, лучи, попавшие на непрозрачный объект, рассеиваются на нём во все стороны, в том числе и в направлении объектива. Поэтому в итоге на тёмном фоне будет виден светлый объект. Такой метод наблюдения хорош для исследования прозрачных объектов, которые на светлом фоне не являются контрастными. По умолчанию большинство микроскопов являются светлопольными. Поэтому, если вы планируете расширить набор методов наблюдения, то стоит выбирать модели микроскопов, в которых предусмотрена установка дополнительного оборудования: конденсоров, устройств фазового контраста, поляризаторов и т.п.

Как известно, оптические системы не идеальны: прохождение света через них сопряжено с искажениями изображения - аберрациями . Поэтому объективы и окуляры стараются изготавливать так, чтобы эти аберрации максимально устранить. Всё это сказывается на их конечной стоимости. Из соображений цены и качества имеет смысл покупать планахроматические объективы. Они используются при профессиональных исследованиях и имеют адекватную цену. Объективы с большим увеличением (например, 100×) имеют числовую апертуру больше 1, что предполагает использование масла при наблюдении - так называемая иммерсия . Поэтому, если кроме «сухих» объективов вы берёте ещё и иммерсионные, стоит заранее позаботиться об иммерсионном масле. Его показатель преломления обязательно должен соответствовать вашему конкретному объективу.

Конечно, это не весь список параметров, которые следует учитывать при покупке микроскопа. Иногда бывает важно обратить внимание на устройство и расположение предметного столика и рукояток для управления им. Стоит выбрать и тип осветителя, которым может быть как обычная лампа накаливания, так и светодиод, который светит ярче и греется меньше. Также микроскопы могут иметь индивидуальные особенности. Но основное, что стоило бы сказать об их устройстве, пожалуй, сказано. Каждая дополнительная опция - это добавка к цене, поэтому выбор модели и комплектации - это удел конечного потребителя.

В последнее время наметилась тенденция покупки микроскопов для детей. Такие устройства обычно являются монокулярами с небольшим набором объективов и скромными параметрами, стоят недорого и могут послужить хорошей отправной точкой не только для непосредственно наблюдений, но и для ознакомления с основными принципами работы микроскопа. После этого ребёнку уже можно будет купить более серьёзное устройство на основании выводов, сделанных при работе с «бюджетной» моделью.

Как смотреть?

Любительское наблюдение не предполагает исключительных навыков ни в работе с микроскопом, ни в подготовке препаратов. Конечно, можно купить далеко не дешёвые наборы уже готовых препаратов, но тогда не таким ярким будет ощущение вашего личного присутствия в исследовании, да и готовые препараты рано или поздно наскучат. Поэтому, купив микроскоп, стоит задуматься о реальных объектах для наблюдения. Кроме того, вам понадобятся хоть и специальные, но доступные средства для подготовки препаратов.

Наблюдение в проходящем свете предполагает, что исследуемый объект является достаточно тонким. Даже не каждая кожура с ягоды или фрукта сама по себе обладает необходимой толщиной, поэтому в микроскопии исследуют срезы. В домашних условиях достаточно адекватные срезы можно делать обычными лезвиями для бритья. При определённой сноровке можно достигнуть толщины среза в несколько клеточных слоёв, что во многом повысит дифференцируемость объектов препарата. В идеале стоит работать с моноклеточным слоем ткани, ибо несколько слоёв клеток, наложенных друг на друга, создают нечёткое и сумбурное изображение.

Исследуемый препарат помещается на стекло предметное и, в случае необходимости, накрывается стеклом покровным. Поэтому, если в комплекте к микроскопу стёкла не прилагаются, их следует купить отдельно. Сделать это можно в ближайшем магазине медицинской техники. Однако не каждый препарат хорошо прилегает к стеклу, поэтому применяют методы фиксации. Основными являются фиксация огнём и спиртом. Первый метод требует определённого навыка, так как можно попросту «спалить» препарат. Второй способ зачастую более оправдан. Чистый спирт достать не всегда возможно, поэтому в аптеке в качестве заменителя можно приобрести антисептик, который, по сути, является спиртом с примесями. Там же стоит купить йод и зелёнку. Эти привычные для нас средства дезинфекции на деле оказываются ещё и хорошими красителями для препаратов. Ведь не всякий препарат открывает свою сущность при первом взгляде. Иногда ему нужно «помочь», подкрасив его форменные элементы: ядро, цитоплазму, органеллы.

Для взятия образцов крови следует приобрести скарификаторы, пипетки и вату. Всё это есть в продаже в медицинских магазинах и аптеках. Кроме того, для сбора объектов из дикой природы следует запастись маленькими пакетиками и баночками. Брать с собой баночку для набора воды из ближайшего водоёма при выезде на природу должно стать у вас хорошей привычкой.

Что смотреть?

Микроскоп приобретён, инструменты закуплены - пора начинать. И начать следует с самого доступного. Что может быть доступнее кожуры репчатого лука (рис. 1 и 2)? Являясь тонкой сама по себе, кожура лука, будучи подкрашенной йодом, обнаруживает в своём строении чётко дифференцируемые ядра. Этот опыт, хорошо знакомый со школы, пожалуй, и стоит провести первым. Саму кожуру лука нужно залить йодом и оставить окрашиваться на 10–15 минут, после чего нужно промыть её под струёй воды.

Кроме того, йод можно использовать для окраски картофеля (рис. 3). Не стоит забывать, что срез необходимо делать как можно более тонким. Буквально 5–10 минут пребывания среза картофеля в йоде проявят пласты крахмала, которые окрасятся в синий цвет. Йод является достаточно универсальным красителем. Им можно окрашивать широкий спектр препаратов.

Рисунок 1. Кожица лука (увеличение: 1000×). Окраска йодом. На фотографии дифференцируется ядро в клетке.

Рисунок 2. Кожица лука (увеличение: 1000×). Окраска Азур-Эозином. На фотографии в ядре дифференцируется ядрышко.

Рисунок 3. Зерна крахмала в картофеле (увеличение: 100×). Окраска йодом.

На балконах жилых домов часто скапливается большое количество трупов летающих насекомых. Не торопитесь от них избавляться: они могут послужить ценным материалом для исследования. Как видно из фотографий, вы обнаружите, что крылья насекомых волосатые (рис. 4–6). Насекомым это необходимо для того, чтобы крылья не намокали . В силу большого поверхностного натяжения, капли воды не могут «провалиться» сквозь волоски и коснуться крыла.

Это явление называется гидрофобностью . Подробно мы о нем говорили в статье «Физическая водобоязнь ». - Ред.

Рисунок 4. Крыло божьей коровки (увеличение: 400×).

Рисунок 5. Крыло бибионида (увеличение: 400×).

Рисунок 6. Крыло бабочки боярышницы (увеличение: 100×).

Если вы когда-нибудь задевали крыло бабочки или моли, то, наверное, замечали, что с неё слетает какая-то «пыль». На фотографиях отчётливо видно, что этой пылью являются чешуйки с их крыльев (рис. 7). Они имеют разную форму и достаточно легки на отрыв.

Кроме того, можно поверхностно изучить строение конечностей членистоногих (рис. 8), рассмотреть хитиновые плёнки - например, на спине таракана (рис. 9). При должном увеличении можно убедиться, что такие плёнки состоят из плотно прилегающих (возможно, сросшихся) чешуек.

Рисунок 7. Чешуйки с крыльев моли (увеличение: 400×).

Рисунок 8. Конечность паука (увеличение: 100×).

Рисунок 9. Плёнка на спине таракана (увеличение: 400×).

Следующее, что стоило бы понаблюдать - это кожура ягод и фруктов (рис. 10 и 11). Не все фрукты и ягоды обладают приемлемой для наблюдения в микроскоп кожурой. Либо её клеточное строение может быть не дифференцируемым, либо толщина не позволит добиться чёткого изображения. Так или иначе, придётся сделать немало попыток, прежде чем вы получите хороший препарат. Вам придётся перебрать разные сорта винограда - например, для того, чтобы найти тот, у которого красящие вещества в кожуре имели бы «приятную для глаза» форму, или сделать несколько срезов кожицы сливы, пока не добьётесь моноклеточного слоя. В любом случае, вознаграждение за проделанную работу будет достойным.

Рисунок 10. Кожура чёрного винограда (увеличение: 1000×).

Рисунок 11. Кожура сливы (увеличение: 1000×).

Рисунок 12. Лист клевера (увеличение: 100×). Некоторые клетки содержат тёмнокрасный пигмент.

Достаточно доступным для исследования объектом является зелень: трава, водоросли, листья (рис. 12 и 13). Но, несмотря на повсеместную распространённость, выбрать и приготовить хороший образец бывает не так-то просто.

Самым интересным в зелени являются, пожалуй, хлоропласты (рис. 14 и 15). Поэтому срез должен быть исключительно тонким. Нередко приемлемой толщиной обладают зелёные водоросли, встречающиеся в любых открытых водоёмах.

Рисунок 13. Лист земляники (увеличение: 40×).Рисунок 16. Плавающая водоросль со жгутиком (увеличение: 400×).

Рисунок 17. Детёныш улитки (увеличение: 40×).

Рисунок 18. Мазок крови. Окраска Азур-Эозином по Романовскому (увеличение: 1000×). На фотографии эозинофил на фоне эритроцитов.

Сам себе учёный

Видео 1. Биение сердца улитки (увеличение оптического микроскопа 100×).

После исследования простых и доступных препаратов естественным желанием является усложнение техник наблюдения и расширение класса изучаемых объектов. Для этого, во-первых, понадобится литература по специальным методам исследования, а, во-вторых, специальные средства. Эти средства, хотя и являются своими для каждого типа объектов, всё-таки обладают некоторой общностью и универсальностью. Например, всеобще известный метод окраски по Граму, когда разные виды бактерий после окраски дифференцируются по цветам, может быть применён и при окраске других, не бактериальных, клеток. Близким к нему по сути является и метод окраски мазков крови по Романовскому. В продаже имеется как уже готовый жидкий краситель, так и порошок, состоящий из таких красящих веществ, как азур и эозин. Все красители можно купить в специализированных медико-биологических магазинах, либо заказать в интернете. Если же по каким-то причинам вы не можете достать краситель для крови, можно попросить лаборанта, делающего вам анализ крови в больнице, приложить к анализу стёклышко с окрашенным мазком вашей крови.

Продолжая тему исследования крови, нельзя не упомянуть камеру Горяева - устройство для подсчёта форменных элементов крови. Будучи важным инструментом для оценки количества эритроцитов в крови ещё в те времена, когда не было устройств для автоматического анализа её состава, камера Горяева также позволяет измерять размеры объектов благодаря нанесённой на неё разметке с известными размерами делений. Методы исследования крови и других жидкостей с помощью камеры Горяева описаны в специальной литературе.

Заключение

В данной статье я постарался рассмотреть основные моменты, связанные с выбором микроскопа, подручных средств и основные классы объектов для наблюдения, которые нетрудно встретить в быту и на природе. Как уже было сказано, специальные средства наблюдения предполагают наличие хотя бы начальных навыков работы с микроскопом, поэтому их обзор выходит за рамки данной статьи. Как видно из фотографий, микроскопия может стать приятным хобби, а может быть, для кого-то даже и искусством.

В современном мире, где разнообразные технические средства и устройства находятся в шаговой доступности, каждый сам решает, на что ему потратить собственные деньги. Из развлекательных соображений это может быть дорогостоящий ноутбук или телевизор с запредельным размером диагонали. Но находятся и те, кто отводит свой взор от экранов и направляет его либо далеко в космос, приобретая телескоп, либо, смотря в окуляр микроскопа, проникают взглядом глубоко внутрь. Внутрь той природы, частью которой мы являемся.

Литература

  1. Ландсберг Г.С. (2003). Оптика. § 92 (стр. 301);
  2. Гуревич А.А. (2003). Пресноводные водоросли;
  3. Козинец Г.И. (1998). Атлас клеток крови и костного мозга;
  4. Коржевский Д.Э. (2010). Основы гистологичесой техники..

Наталия Шибакова

Конспект непосредственно-организованной деятельности на тему:

«Чудеса в микроскопе!»

Составила и провела

Воспитатель группы:

Шибакова Наталия Валерьевна

Дать элементарные навыки работы с микроскопом.

Познакомить детей с наиболее важным и увлекательным средством проведения опытов – микроскопом;

Организовать детское экспериментирование с микроскопом;

Закреплять умение обращать внимание на структуру и цвет приготовленных для опыта образцов, сравнивать, делать выводы;

Обогащать детей новыми, интересными знаниями;

Развивать любознательность, пытливость, терпение, умение доводить начатое до логического конца;

Познакомить с понятием «клетка» и «клеточное строение» на наглядном материале (фрукты, овощи, вода, волос);

Формировать умение отвечать на вопрос полным предложением.

Активизация и пополнение активного и пассивного словаря следующими словами и выражениями: микроскоп, экран, механизм, часть, объектив, окуляр, тубус, предметный стол, отражающее зеркало, фокусировочный механизм, штатив, пинцет, предметное стекло, покровное стекло, полый.

I часть.

В - Ребята, посмотрите на экран, и ответьте на вопрос - как называется этот предмет? Кто знает?

Д - Этот предмет называется микроскоп!

В - Верно! На экране показан микроскоп! А как вы думаете, для чего он нужен?

Д - Микроскоп нужен для того, чтобы рассматривать самые маленькие предметы!

В - Какие молодцы, верно! А теперь посмотрите на микроскоп внимательней, это очень сложный механизм состоит из многих частей, например, как велосипед…из каких частей он состоит (руль, колеса, седло, рама, цепь, педали, спицы?

Д - Велосипед состоит из таких частей, как: руль, колеса…

В - А знаете ли вы, из каких частей состоит микроскоп?

Д - Нет, мы не знаем, из каких частей он состоит.

В - Тогда я думаю, вам будет интересно сегодня это узнать, посмотрите на экран…

1) Объектив - самая важная часть микроскопа! Потому что в нем спрятана одна маленькая, но важная деталь - линза! Ее еще называют – увеличительное стекло, вы наверняка слышали это название. Именно с помощью линзы, спрятанной в объективе, мы можем увидеть самые маленькие предметы, и даже рассмотреть из чего они состоят. Именно от линзы зависит качество изображения, то есть картинки, которую увидят ваши глазки.

На сложных микроскопах, которыми пользуются ученые, бывает сразу несколько объективов, это сделали для того, чтобы было удобней работать, и увидеть один и тот же предмет с разным увеличением.

Как вы думаете, почему можно увидеть один и тот же предмет с разным увеличением?

Потому что линзы бывают разной силы, или мощности. Слабые линзы увеличивают предмет совсем немного, а сильные - очень хорошо, так хорошо, что видно буквально все! Даже микробы! А они, как вы уже знаете, нашим глазкам совсем не видны.

2) Окуляр - это часть микроскопа, которое находится к нашим глазкам ближе всего. Окуляр закрыт стеклышком. Это сделано для того, чтобы защитить объектив и линзу от пыли. Объектив и окуляр - как братья, всегда дружат и работают вместе.

Давайте покажем окуляр с помощью наших ладошек (соединить ладонь в круг и посмотреть сквозь него).

3) Посмотрите, эта часть микроскопа называется - тубус! На что он похож? Верно, на трубку! Тубус – это полая, то есть пустая трубка, которая соединяет объектив и окуляр между собой на определенном расстоянии и под определенным углом, таким, чтобы было удобно рассматривать предметы под микроскопом!

ТУБУС - это тоннель, который помогает окуляру и объективу дружить! Мы с вами тоже можем его показать! (сделать из обоих ладоней трубки, и соединить их под углом –получился окуляр и тубус)

4) Предметный столик – это место, куда кладется тот предмет, который мы хотим рассмотреть.

Как мы можем показать предметный столик? Верно, с помощью прямой ладошки.

5) Отражающее зеркало – это специальное зеркало, которое используют для освещения рассматриваемого предмета. Это необычное зеркало, оно не похоже на зеркала, которые есть у каждого из нас дома. Отражающее зеркало собирает лучики света, которые исходят от лампы, окна и направляет их на рассматриваемый нами предмет, освещая его.

6) Посмотрите на тубус. На его спинке спряталась еще одна важная часть микроскопа – фокусировочный механизм! (повторить название по слогам) Сложное название, не правда ли? А сейчас повторим его название вместе! ФО-КУ-СИ-РО-ВОЧ-НЫЙ МЕ-ХА-НИ-ЗМ! Мы будем называть его просто – фокусник! Этот механизм и в правду умеет показывать фокусы! Посмотришь в окуляр на капельку, а ее совсем не видно. Вот тогда и приходит на помощь фокусник! Нужно только немного покрутить ручку, и капелька станет видна! Давайте се вместе покрутим ручку вперед (выполняем вращательные движения) и назад. Молодцы, у всех отлично получилось! Настоящие фокусники!

7) А эта часть микроскопа называется – штатив! Именно к нему прикрепляют все остальные части микроскопа.

Как можно показать штатив? (встать ровно, не двигаться)

У микроскопа есть маленькие помощники:

пинцет - с его помощью мы берем и переносим маленькие кусочки разных предметов, чтобы их не сломать и не испортить;

предметное стекло - нужно для того, чтобы класть на него различные предметы, которые хочется рассмотреть;

покровное стекло - покровным стеклом накрывается предмет, лежащий на предметном стекле.

Вопросы к детям:

Что такое микроскоп? Для чего он нужен?

Из каких частей состоит микроскоп? (Окуляр, объектив, тубус, предметный столик, отражающее зеркало, фокусировочный механизм, штатив)

Как называются помощники микроскопа? (пинцет, предметное и покровное стекло)

Опыт 1: Рассматривание готовых образцов.

Цель: Закреплять умение обращать внимание на структуру и цвет приготовленных для опыта образцов, сравнивать, делать выводы;

Опыт 2: «Прозрачность»

Разведение крепкого раствора морской соли и сладкого раствора (сахара);


Нанесение его на приборные стекла;

Дать раствору высохнуть и лишь, затем рассмотреть под микроскопом;

Цель: Обратить внимание детей на прозрачность соленой и сладкой воды.

Опыт 3: «Воздух волшебник»

Рассмотреть срез картошки и банана;

Отметить, что под воздействием кислорода (воздуха, срезы становятся темными.

Цель: Показать влияние внешней среды на продукт.

Опыт 4: «Из чего что состоит?»

Рассматривание структуры среза листа;

Рассматривание кристаллов соли и сахара (что общего, и чем отличаются);

Рассматривание волокон банана и картофеля (что общего, и чем отличаются).

Цель: Познакомить с понятием «клетка» и показать детям клеточное строение на примере фруктов, овощей, воды.


Опыт 5: «Структура волоса»

Рассматривание структуры волоса;

Цель: продолжать знакомство с клеточным строением на примере волоса.